

Marks of Objective, Short Notes, Distinguish Between, Descriptive \& Practical Questions Legend

Multiple Choice Questions and Answers

2009 - JUNE

[1] If $\frac{p}{q}=-\frac{2}{3}$ then the value of $\frac{2 p+q}{2 p-q}$ is:
(a) 1
(b) $-1 / 7$
(c) $1 / 7$
(d) 7

Answer:

(c) $\frac{p}{q}=\frac{-2}{3}$

So, $P=\frac{-2 q}{3}$
Now, $\frac{2 p+q}{2 q-p}$
Substituting the value of p from (i)
$=\frac{2\left(\frac{-2 q}{3}\right)+q}{2\left(\frac{-2 q}{3}\right)-q}$
$=\frac{\frac{-4 q}{3}+q}{\frac{-4 q}{3}-q}$
$=\frac{\frac{-4 q+3 q}{3}}{\frac{-4 q-3 q}{3}}$
$=\quad \frac{-q}{3} \times \frac{3}{-7 q}$

$$
=\quad \frac{1}{7}
$$

[2] Fourth proportional to $x, 2 x,(x+1)$ is:
(a) $(x+2)$
(b) $(x-2)$
(c) $(2 x+2)$
(d) $(2 x-2)$

Answer:

(c) Let the fourth proportional to $\mathrm{x}, 2 \mathrm{x},(\mathrm{x}+1)$ be t , then,
$\frac{x}{2 x}=\frac{x+1}{t}$
$\frac{1}{2}=\frac{x+1}{t}$
$\mathrm{t}=2 \mathrm{x}+2$
\therefore Fourth proportional to $\mathrm{x}, 2 \mathrm{x},(\mathrm{x}+1)$ is $(2 \mathrm{x}+2)$
i.e. $x: 2 x::(x+1):(2 x+2)$
[3] If $x=3^{1 / 3}+3^{-1 / 3}$ then find value of $3 x^{3}-9 x$
(a) 3
(b) 9
(c) 12
(d) 10

Answer:
(d) $x=3^{1 / 3}+3^{-1 / 3}$

On cubing both sides, we get

$$
\begin{align*}
& x^{3}=\left(3^{1 / 3}+3^{-1 / 3}\right)^{3} \tag{1}\\
& x^{3} 3+3^{-1}+3 \times 3^{1 / 3} \times \frac{1}{3^{1 / 3}}\left(3^{1 / 3}+3^{-1 / 3}\right) \\
& x^{3}=3+\frac{1}{3}+3\left(3^{1 / 3}+3^{-1 / 3}\right) \\
& x^{3}=3+\frac{1}{3}+3 x[U \operatorname{sing}(1)]
\end{align*}
$$

$$
\begin{aligned}
& x^{3}-3 x=\frac{9+1}{3} \\
& 3\left(x^{3}-3 x\right)=10 \\
& \therefore 3 x^{3}-9 x=10
\end{aligned}
$$

[4] Find the value of : $\left[1-\left\{1-\left(1-x^{2}\right)^{-1}\right\}^{-1}\right]^{-1 / 2}$
(a) $1 / x$
(b) x
(c) 1
(d) None of these.

Answer:

(b) $\quad\left[1-\left\{1-\left(1-x^{2}\right)^{-1}\right\}^{-1}\right]^{-1 / 2}$

$$
=\left[1-\left\{1-\frac{1}{1-x^{2}}\right\}^{-1}\right]^{-1 / 2}
$$

$$
=\left[1-\left\{\frac{1-x^{2}-1}{1-x^{2}}\right\}^{-1}\right]^{-1 / 2}
$$

$$
=\left[1-\left\{\frac{-x^{2}}{1-x^{2}}\right\}^{-1}\right]^{-1 / 2}
$$

$$
=\left[1-\left\{\frac{1-x^{2}}{x^{2}}\right\}^{-1}\right]^{-1 / 2}
$$

$$
=\left[1+\frac{1-x^{2}}{x^{2}}\right]^{-1 / 2}=\left[\frac{x^{2}+1-x^{2}}{x^{2}}\right]^{-1 / 2}
$$

$$
=\left[\frac{1}{x^{2}}\right]^{-1 / 2}=\left(x^{2}\right)^{1 / 2}
$$

$$
=x
$$

[5] $\log (m+n)=\log m+\log n, m$ can be expressed as:
(a) $m=\frac{n}{n-1}$
(b) $m=\frac{n}{n+1}$
(c) $\mathrm{m}=\frac{\mathrm{n}+1}{\mathrm{n}}$
(d) $m=\frac{n+1}{n-1}$

Answer:

(a) $\log (m+n)=\log m+\log n$ $\log (m+n)=\log (m n) \quad[\because \log (a b)=\log a+\log b]$
Taking Antilog on both side
Antilog $[\log (m+n)]=$ Antilog $[\log m n]$

$$
\begin{aligned}
\therefore \quad & m+n=m n \\
& m n-m=n \\
& m(n-1)=n \\
& m=\frac{n}{n-1}
\end{aligned}
$$

[6] $\quad \log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$.
Find x
(a) 16
(b) 0
(c) -1
(d) None of these.

Answer:

(a) $\log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$

$$
\begin{aligned}
& \log _{4}\left(\frac{x^{2}+x}{x+1}\right)=2\left[\therefore \log _{a} m-\log _{a} n=\log _{a}\left(\frac{m}{n}\right)\right] \\
& 4^{2}=\frac{x^{2}+x}{x+1} \\
& 16=\frac{x^{2}+x}{x+1} \\
& 16 x+16=x^{2}+x \\
& x^{2}-15 x-16=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-16 x+x-16=0 \\
& x(x-16)+1(x-16)=0 \\
& (x+1)(x-16)=0 \\
& x=-1 \text { or } x=16 \\
& \text { Since } x=-1 \text { is not possible therefore } x=16
\end{aligned}
$$

2009 - December

[7] $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$
(a) $1 / 2$
(b) -3
(c) $2 / 3$
(d) $1 / 3$

Answer:
(b) $2 n+2 n-1 / 2 n-1-2 n$
$2 n+2 n^{*} 2-1 / 2 n * 2-1-2 n$
$2 n(1+2-1) / 2 n(2-1-1)$
$=3 / 2$
[8] If $2^{x} \times 3^{y} \times 5^{z}=360$ Then what is the value of x, y, z, ?
(a) $3,2,1$
(b) 1, 2, 3
(c) $2,3,1$
(d) 1, 3, 2

Answer:
(a) $2^{x} \times 3^{y} \times 5^{z}=360$.

The factors of 360 are:
$2^{3} \times 3^{2} \times 5$.
$\therefore 2^{3} \times 3^{2} \times 5^{1}=360$.

On comparing (1) and (2), we get;

$$
x=3, y=2 \text { and } z=1
$$

[9] Find the value of $\left[\log _{10} \sqrt{25}-\log _{10}(2)^{3}+\log _{10}(4)^{2}\right]^{x}$
(a) x
(b) 10
(c) 1
(d) None.

Answer:

(c) $\quad\left[\log _{10} \sqrt{25}-\log _{10}\left(2^{3}\right)+\log _{10}\left(4^{2}\right)\right]^{x}$
$=\left[\log _{10} 5-3 \log _{10} 2+\log _{10}\left(2^{4}\right)\right]^{x}$
$=\left[\log _{10} 5-3 \log _{10} 2+4 \log _{10}{ }^{2}\right]^{x}$
$=\left[\log _{10} 5+\log _{10}{ }^{2}\right]^{x}$
$=\left[\log _{10}(5 \times 2)\right]^{x}[\because \log (m n)=\log m+\log n]$
$=\left[\log _{10} 10\right]^{x}$
$=1^{x}\left[\therefore \log _{\mathrm{a}} \mathrm{a}=1\right]$
$=1$
2010 - June
[10] If $\log _{a} b+\log _{a} c=0$ then
(a) $b=c$
(b) $\mathrm{b}=-\mathrm{c}$
(c) $\mathrm{b}=\mathrm{c}=1$
(d) b and c are reciprocals. (1 mark)

Answer:

(d) $\quad \log _{2} b+\log _{a} c=0$
$\log _{a} b c=0$
$a^{0}=b c$
$b c=1$
$\therefore \mathrm{b}=\frac{1}{\mathrm{c}}$
So, b and c are reciprocals.
[11] What must be added to each term of the ratio $49: 68$, so that it becomes 3:4?
(a) 3
(b) 5
(c) 8
(d) 9
(1 mark)

Answer:

(c) Let the number added be x

$$
\begin{aligned}
& \frac{49+x}{68+x}=\frac{3}{4} \\
& 196+4 x=204+3 x \\
& x=8
\end{aligned}
$$

[12] The students of two classes are in the ratio $5: 7$, if 10 students left from each class, the remaining students are in the ratio of $4: 6$ then the number of students in each class is:
(a) 30, 40
(b) 25, 24
(c) 40,60
(d) 50, 70
(1 mark)

Answer:

(d) Let the ratio be $5 x: 7 x$

If 10 student left, Ratio became 4:6

$$
\begin{aligned}
& \frac{5 x-10}{7 x-10}=\frac{4}{6} \\
& 30 x-60=28 x-40 \\
& 2 x=20 \\
& x=10
\end{aligned}
$$

$\therefore \quad$ No. of students in each class is $5 x$ and $7 x$
i.e. 50,70

2010 - December

[13] The value of
$2 \log x+2 \log x^{2}+2 \log x^{3}+------+$ $2 \log x^{n}$ will be :
[Chapter - 1] Ratio and Proportion, Indices, Logarithms
(a) $\frac{n(n+1) \log x}{2}$
(b) $n(n+1) \log x$
(c) $\mathrm{n}^{2} \log \mathrm{x}$
(d) None of these.

Answer:

(b) $2 \log x+2 \log x^{2}+2 \log x^{3}+\ldots \ldots \ldots \ldots$ $2\left[\log x+\log x^{2}+\log x^{3}+\ldots \ldots \ldots \ldots \ldots\right]$ $2[\log x+2 \log x+3 \log x+\ldots \ldots \ldots \ldots . . .$.
$2 \log x[1+2+3$ n]
$2 \log x \times \frac{n(n+1)}{2}$
$=n(n+1) \log x$
[14] The recurring decimal 2.7777........ can be expressed as:
(a) $24 / 9$
(b) $22 / 9$
(c) $26 / 9$
(d) $25 / 9$

Answer:
(d) 2.7777

$$
2+0.7+0.07+0.007+
$$

$$
2+\left(\frac{7}{10}+\frac{7}{100}+\frac{7}{1000}+\ldots \ldots \ldots\right)
$$

$$
2+7\left(\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\ldots \ldots . .\right)
$$

$$
2+7\left(\frac{1 / 10}{1-1 / 10}\right)
$$

$$
=2+7 \times \frac{1}{9}
$$

$$
=2+\frac{7}{9}
$$

$$
=\frac{18+7}{9}
$$

$$
=\frac{25}{9}
$$

[15] Solve : $\left(\frac{\log _{10} x-3}{2}\right)+\left(\frac{11-\log _{10} x}{3}\right)=2$
(a) 10^{-1}
(b) 10^{2}
(c) 10
(d) 10^{3}
(1 mark)

Answer:

(a) $\left(\frac{\log _{10} x-3}{2}\right)+\left(\frac{11-\log _{10} x}{3}\right)=2$

$$
\begin{aligned}
& 3 \log _{10} x-9+22-2 \log _{10} x=12 \\
& \log _{10} x+13=12 \\
& \log _{10} x=-1 \\
& x=10^{-1}
\end{aligned}
$$

[16] If $A: B=2: 5$, then $(10 A+3 B):(5 A+2 B)$ is equal to:
(a) $7: 4$
(b) $7: 3$
(c) $6: 5$
(d) $7: 9$
(1 mark)
Answer:
(a) $\frac{\mathrm{A}}{\mathrm{B}}=\frac{2}{5}=\frac{2 \mathrm{k}}{5 \mathrm{k}}$

$$
\frac{10 A+3 B}{5 A+2 B}=\frac{20 k+15 k}{10 k+10 k}=\frac{35 k}{20 k}
$$

$$
=\frac{35}{20}
$$

$$
=\frac{7}{4}
$$

2011 - JUNE

[17] If $n=m$! where (' m ' is a positive integer >2) then the value of : $\frac{1}{\log _{2}{ }^{n}}+\frac{1}{\log _{3}{ }^{n}}+\frac{1}{\log _{4}{ }^{n}}+\ldots \ldots \ldots .+\frac{1}{\log _{m}{ }^{n}}$
(a) 1
(b) 0
(c) -1
(d) 2
[Chapter - 1] Ratio and Proportion, Indices, Logarithms

Answer:

(a) Given : $\mathrm{n}=\mathrm{M}$! for $\mathrm{M} \geq 2$

$$
\begin{aligned}
& \frac{1}{\log _{2}{ }^{n}}+\frac{1}{\log _{3}{ }^{n}}+\frac{1}{\log _{4}{ }^{n}}+\ldots \ldots \ldots \ldots+\frac{1}{\log _{m}{ }^{n}} \\
& \text { or, }=\log _{n}{ }^{2}+\log _{n}{ }^{3}+\log _{n}{ }^{4}+\ldots \ldots \ldots \ldots \ldots+\log _{n}{ }^{m} \quad\left(\therefore \log _{b}{ }^{a}=\frac{1}{\log _{2}{ }^{b}}\right) \\
& =\log _{n}(2 \times 3 \times 4 \times \ldots \ldots . . \times m) \quad\left(\therefore \log ^{(m n)}=\log ^{m}+\log ^{n}\right) \\
& =\log _{n}(m!) \\
& =\log _{n}{ }^{n} \\
& =1
\end{aligned}
$$

[18] In a film shooting, A and B received money in a certain ratio and B and C also received the money in the same ratio. If A gets $₹ 1,60,000$ and C gets ₹ $2,50,000$. Find the amount received by B ?
(a) ₹ 2,00,000
(b) ₹ $2,50,000$
(c) ₹ $1,00,000$
(d) ₹ $1,50,000$

Answer:

(a) Given: $\mathrm{A}: \mathrm{B}=\mathrm{B}: \mathrm{C}$

$$
\begin{array}{ll}
\Rightarrow & B^{2}=A \times C \\
\text { or } & B=\sqrt{A \times C} \\
\& & A=1,60,000 ; C=2,50,000 \\
\therefore & B=\sqrt{1,60,000 \times 2,50,000} \\
& B=2,00,000
\end{array}
$$

2011 - December

[19] The ratio Compounded of $4: 5$ and sub-duplicate of "a":9 is $8: 15$. Then Value of " a " is:
(a) 2
(b) 3
(c) 4
(d) 5

Answer:

(c) Sub duplicate ratio of a: $9=\sqrt{\mathrm{a}}: \sqrt{9}$, Compound Ratio (C.R.) = 8:15
Compound Ratio of $4: 5$ and sub duplicate ratio of a:9 is given by
C. $R=\frac{4}{5} \times \frac{\sqrt{\mathrm{a}}}{\sqrt{9}}$
$\frac{8}{15}=\frac{4}{5} \times \frac{\sqrt{\mathrm{a}}}{\sqrt{9}}$
$\sqrt{\mathrm{a}}=\frac{8 \times 5 \times \sqrt{9}}{15 \times 4}$
$\sqrt{\mathrm{a}}=\frac{8 \times 5 \times 3}{15 \times 4}$
$\sqrt{\mathrm{a}}=2$
On squaring $(\sqrt{\mathrm{a}})^{2}=2^{2}$

$$
a=4
$$

[20] If $\log _{2} x+\log _{4} x=6$, then the Value of x is :
(a) 16
(b) 32
(c) 64
(d) 128

Answer:

(a) If $\log _{2} x+\log _{4} x=6$

$$
\begin{aligned}
& \frac{\log x}{\log 2}+\frac{\log x}{\log 4}=6 \\
& \frac{\log x}{\log 2}+\frac{\log x}{\log 2^{2}}=6 \\
& \frac{\log x}{\log 2}+\frac{\log x}{2 \log 2}=6 \\
& \frac{\log x}{\log 2}\left[1+\frac{1}{2}\right]=6 \\
& \frac{\log x}{\log 2} \times \frac{3}{2}=6 \\
& \frac{\log x}{\log 2}=6 \times \frac{2}{3}
\end{aligned}
$$

[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
\begin{aligned}
& \frac{\log x}{\log 2}=4 \\
& \log x=4 \log 2 \\
& \log x=\log 2^{4} \\
& x=2^{4} \\
& x=16
\end{aligned}
$$

[21] If X Varies inversely as square of Y and given that $\mathrm{Y}=2$ for $\mathrm{X}=1$, then the Value of X for $Y=6$ will be:
(a) 3
(b) 9
(c) $1 / 3$
(d) $1 / 9$

Answer:
(d) Given x varies inversely as square of y
i. e. x á $\frac{1}{y^{2}}$
$x=k \frac{1}{y^{2}}$
$x=\frac{k}{y^{2}}$.
Given $x=1, y=2$ then
$1=\frac{\mathrm{k}}{(2)^{2}} \Rightarrow \mathrm{k}=1 \times 4=4$
Now putting $y=6{ }_{1} k=4$ in equation (1)

$$
\begin{aligned}
& x=\frac{4}{6^{2}} \\
& x=\frac{4}{36}=\frac{1}{9}
\end{aligned}
$$

2012-JUNE

[22] The value of $\frac{\left(3^{n+1}+3^{n}\right)}{\left(3^{n+3}-3^{n+1}\right)}$ is equal to:
(a) $1 / 5$
(b) $1 / 6$
(c) $1 / 4$
(d) $1 / 9$

Answer:
(b) $\frac{3^{n+1}+3^{n}}{3^{n+3}-3^{n+1}}=\frac{3^{n} \cdot 3^{1}+3^{n}}{3^{n} \cdot 3^{3}-3^{n} \cdot 3^{1}}$
$=\frac{3^{n}\left(3^{1}+1\right)}{3^{n}\left(3^{3}-3\right)}$
$=\frac{(3+1)}{(27-3)}$
$=\frac{4}{24}$
$=\frac{1}{6}$
[23] If $\log x y=100$ and $\log _{2} x=10$, then the value of ' y ' is:
(a) 2^{10}
(b) 2^{100}
(c) $2^{1,000}$
(d) $2^{10,000}$
(1 mark)
Answer:
(c) Given $\log _{x} y=100$
$\log _{2} x=10$
Multiply eq (1) \& (2)
$\log _{x} y . \log _{2} x=100 \times 10$

$$
\frac{\log y}{\log x} \times \frac{\log x}{\log 2}=1,000
$$

$\log y=1,000 \log 2$
$\log y=\log 2^{1,000}$
$\Rightarrow y=2^{1,000}$
[24] Which of the numbers are not in proportion?
(a) $6,8,5,7$
(b) 7, 3, 14, 6
[Chapter - 1] Ratio and Proportion, Indices, Logarithms
(c) $18,27,12,18$
(d) $8,6,12,9$

Answer:
(a) If say a, b, c, d are in proportion they bear a common ratio that is

$$
\Rightarrow \quad \frac{\mathrm{a}}{\mathrm{~b}}=\frac{\mathrm{c}}{\mathrm{~d}}
$$

Option (A) $\quad \frac{6}{8} \neq \frac{5}{7}$
Option (B) $\quad \frac{7}{3}=\frac{14}{6}$
Option (C) $\quad \frac{18}{27}=\frac{12}{18}$
Option (D) $\frac{8}{6}=\frac{12}{9}$

2012 - December
[25] Find the value of x, if $x(x)^{1 / 3}=\left(x^{1 / 3}\right)^{x}$
(a) 3
(b) 4
(c) 2
(d) 6

Answer:
(b) If $x^{1}(x)^{1 / 3}=\left(x^{1 / 3}\right)^{x}$

$$
\begin{aligned}
& x^{1+1 / 3}=x^{\frac{1}{3}} \mathrm{x} \\
& \Rightarrow x^{4 / 3}=x^{\frac{1}{3}} \mathrm{x}
\end{aligned}
$$

on comparing

$$
\frac{4}{3} \neq \frac{x}{3}
$$

$$
3 x=12 \Rightarrow x=4
$$

[26] Which of the following is true.

If $\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}=\frac{1}{a b c}$
(a) $\log (a b+b c+c a)=a b c$
(b) $\log \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c$
(c) $\log (a b c)=0$
(d) $\log (a+b+c)=0$
(1 mark)

Answer:

(d) Given

$$
\begin{aligned}
& \frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}=\frac{1}{a b c} \\
& \frac{c+a+b}{a b c}=\frac{1}{a b c} \\
& a+b+c=1
\end{aligned}
$$

taking log on both side

$$
\log (a+b+c)=\log 1
$$

$$
\log (a+b+c)=0
$$

[27] Find two numbers such that mean proportional between them is 18 and third proportional between them is 144
(a) 9, 36
(b) 8,32
(c) 7,28
(d) 6,24

Answer:

(a) Let two Nos. be x and y

Mean proportion between x and y is 18
So, $x, 18, y$ are in proportion
x : 18 :: 18 : y

$$
\begin{align*}
& \frac{x}{18}=\frac{18}{y} \\
& x y=324 \\
& x=\frac{324}{y} \tag{1}
\end{align*}
$$

If third proportion between $x \& y$ be 144
So, $x, y, 144$ are in proportion
$x: y:: y: 144$
[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
\begin{align*}
& \frac{x}{y}=\frac{y}{144} \\
& y^{2}=144 x \tag{2}
\end{align*}
$$

\qquad
Putting the value of x in equation (2)
$y^{2}=144 \times \frac{324}{y}$
$y^{3}=144 \times 324$
$y=3 \sqrt{144 \times 324}$
$y=\sqrt[3]{3 \times 3 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3}$
$y=\sqrt[3]{6 \times 6 \times 6 \times 6 \times 6 \times 6}$
$y=6 \times 6$
$y=36$
Putting $y=36$ in equation (1)
$x=\frac{324}{36}=9$
$x=9, y=36$

[28] For what value of x, the equation $\left(\log _{\sqrt{x}} 2\right)^{2}=\log _{x}{ }^{2}$ is true?
(a) 16
(b) 32
(c) 8
(d) 4

Answer:
(a) Given

$$
\begin{aligned}
\left(\log _{\sqrt{x} 2}\right)^{2} & =\log _{x} 2 \\
\left(\frac{\log 2}{\log \sqrt{x}}\right)^{2} & =\left(\frac{\log 2}{\log x}\right) \\
\left(\frac{\log 2}{\log x^{1 / 2}}\right)^{2} & =\frac{\log 2}{\log x} \\
\left(\frac{\log 2}{\frac{1}{2} \log x}\right)^{2} & =\frac{\log 2}{\log x}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{2 \log 2}{\log x}\right)^{2} & =\left(\frac{\log 2}{\log x}\right) \\
4\left(\frac{\log 2}{\log x}\right)^{2} & =\left(\frac{\log 2}{\log x}\right)^{1} \\
4 \frac{\log 2}{\log x} & =1 \\
4 \log 2 & =\log x \\
\log 2^{4} & =\log x \\
\Rightarrow \quad 2^{4} & =x \Rightarrow x=16
\end{aligned}
$$

[29] The mean proportional between 24 and 54 is:
(a) 33
(b) 34
(c) 35
(d) 36

Answer:

(d) Mean Proportion $=\sqrt{24 \times 54}$

$$
\begin{aligned}
& =\sqrt{1296} \\
& =36
\end{aligned}
$$

[30] The triplicate ratio of $4: 5$ is:
(a) $125: 64$
(b) $16: 25$
(c) $64: 125$
(d) $120: 46$

Answer:

(c) The triplicate Ratio of $4: 5=4^{3}: 5^{3}$

2013 - DeCEMBER

[31] If $\sqrt[3]{a}+3 \sqrt{b}+3 \sqrt{c}$ then the value of $\left(\frac{a+b+c}{3}\right)^{3}=0$
(a) abc
(b) $9 a b c$
(c) $\frac{1}{\mathrm{abc}}$
(d) $\frac{1}{9 a b c}$

Answer:
(a) If $3 \sqrt{a}+3 \sqrt{b}+3 \sqrt{c}=0$

$$
\begin{align*}
& a^{1 / 3}+b^{1 / 3}+c^{1 / 3}=0 \\
& a^{1 / 3}+b^{1 / 3}=-c^{1 / 3} \tag{i}
\end{align*}
$$

Cube on both side

$$
\begin{aligned}
& \left(a^{1 / 3}+b^{1 / 3}\right)^{3}=\left(-c^{1 / 3}\right)^{3} \\
& \left(a^{1 / 3}\right)^{3}+\left(b^{1 / 3}\right)^{3}+3 \cdot a^{1 / 3} \cdot b^{1 / 3}\left(a^{1 / 3}+b^{1 / 3}\right)=-c \\
& a+b+3 a^{1 / 3} \cdot b^{1 / 3} \cdot\left(-c^{1 / 3}\right)=-c \\
& a+b-3 a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3}=-c \\
& a+b+c=3 a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3} \\
& \left(\frac{a+b+c}{3}\right)=\frac{3 a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3}}{3} \\
& \left(\frac{a+b+c}{3}\right)^{3}=\left(a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3}\right)^{3}=a b c
\end{aligned}
$$

[32] Find three numbers in the ratio $1: 2: 3$, so that the sum of their squares is equal to 504
(a) $6,12,18$
(b) $3,6,9$
(c) $4,8,12$
(d) $5,10,15$

Answer:

(a) Since Ratio of three Number is 1:2:3

First No. $=x$
Second No. $=2 x$
Third No. $=3 x$
Sum of squares of numbers $=504$

$$
\begin{aligned}
(x)^{2}+(2 x)^{2}+(3 x)^{2} & =504 \\
x^{2}+4 x^{2}+9 x^{2} & =504 \\
14 x^{2} & =504 \\
x^{2} & =\frac{504}{14} \\
x^{2} & =36 \\
x & =6
\end{aligned}
$$

First No. $=x=6$
Second No. $=2 x=2 \times 6=12$
Third No. $=3 \mathrm{x}=3 \times 6=18$
[33] The value of $\log _{4} 9 . \log _{3} 2$ is:
(a) 3
(b) 9
(c) 2
(d) 1

Answer:

(d) $\log _{4} 9 \cdot \log _{3} 2$
$=\quad \frac{\log 9}{\log 4} \cdot \frac{\log 2}{\log 3}$
$=\frac{\log 3^{2}}{\log 2^{2}} \cdot \frac{\log 2}{\log 3}$
$=\quad \frac{2 \log 3}{2 \log 2} \cdot \frac{\log 2}{\log 3}$
$=1$
[34] The value of $\left(\log _{y} x \cdot \log _{z} y \cdot \log _{x} z\right)^{3}$ is
(a) 0
(b) -1
(c) 1
(d) 3
(1 mark)

Answer:

(c) $\left(\log _{y} x \cdot \log _{z} y \cdot \log _{x} z\right)^{3}$

$$
\begin{aligned}
& =\left(\frac{\log x}{\left.\log \cdot \frac{\log y}{\log z} \cdot \frac{\log z}{\log x}\right)^{3}}\right. \\
& =(1)^{3} \\
& =1
\end{aligned}
$$

[35] Divide 80 into two parts so that their product is maximum, then the numbers are:
(a) 25,55
(b) 35,45
(c) 40,40
(d) 15,65
(1 mark)
[Chapter - 1] Ratio and Proportion, Indices, Logarithms

Answer:

(c) The sum of two No. $=80$

First No. $=x$
Second No. $=(80-x)$
Product two No = x. $(80-x)$

$$
\begin{equation*}
P=80 x-x^{2} \tag{1}
\end{equation*}
$$

w.r.f. (x)

$$
\begin{align*}
& \frac{d p}{d x}=80-2 x \tag{2}\\
& \frac{d^{2} p}{d x^{2}}=-2 \tag{3}
\end{align*}
$$

For max/minima

$$
\begin{gathered}
\frac{d p}{d x}=0 \\
80-2 x=0 \\
2 x=80 \\
x=40 \\
x=40 \text { in equation (iii) } \\
\frac{d^{2} p}{d x^{2}}=-2 \text { (Negative) }
\end{gathered}
$$

function is maximum at $x=40$
Numbers are 40, ($80-40$)

$$
=40,40
$$

2014 - JUNE

[36] If $x: y=2: 3$, then $(5 x+2 y):(3 x-y)=$
(a) $19: 3$
(b) $16: 3$
(c) $7: 2$
(d) $7: 3$

Answer:

(b) Given,

$$
\begin{aligned}
& x: y=2: 3 \\
& \text { Let } x=2 k, y=3 k
\end{aligned}
$$

$$
\begin{aligned}
& (5 \mathrm{x}+2 \mathrm{y}):(3 \mathrm{x}-\mathrm{y}) \\
& =\frac{(5 \mathrm{x}+2 \mathrm{y})}{(3 \mathrm{x}-\mathrm{y})} \\
& =\frac{5 \times 2 \mathrm{k}+2 \times 3 \mathrm{k}}{3 \times 2 \mathrm{k}-3 \mathrm{k}} \\
& =\frac{10 \mathrm{k}+6 \mathrm{k}}{6 \mathrm{k}-3 \mathrm{k}} \\
& =\frac{16 \mathrm{k}}{3 \mathrm{k}} \\
& =16: 3
\end{aligned}
$$

[37] If $(25)^{150}=(25 x)^{50}$; then the value of x will be :
(a) 5^{3}
(b) 5^{4}
(c) 5^{2}
(d) 5

Answer:

(b) If $\begin{aligned}(25)^{150} & =(25 x)^{50} \\ 25^{150} & =25^{50} \cdot x^{50}\end{aligned}$
$\Rightarrow \frac{25^{150}}{25^{50}}=x^{50}$
$\Rightarrow 25^{100}=x^{50}$
$\Rightarrow\left(5^{2}\right)^{100}=x^{50}$
$\Rightarrow 5^{200}=x^{50}$
$\Rightarrow\left(5^{4}\right)^{50}=x^{50}$
$\Rightarrow 5^{4}=x$
$\Rightarrow x \quad=5^{4}$
[38] The value of $\left(\frac{y^{a}}{y^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{y^{b}}{y^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{y^{c}}{y^{a}}\right)^{c^{2}+a c+a^{2}}$ is equal to ___ . .
(a) y
(b) -1
(c) 1
(d) None of these

Answer:

(c) $\left(\frac{y^{a}}{y^{b}}\right)^{a^{2}+a b+b^{2}}\left(\frac{y^{b}}{y^{c}}\right)^{b^{2}+b c+c^{2}} \cdot\left(\frac{y^{c}}{y^{a}}\right)^{c^{2}+a c+a^{2}}$
$=\left(y^{a-b}\right)^{a^{2}+a b+b^{2}} \cdot\left(y^{b-c}\right)^{b^{2}+b c+c^{2}} \cdot\left(y^{c-a}\right)^{c^{2}+a c+a^{2}}$
[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
\begin{aligned}
& =y^{y^{3}-b^{3}} \cdot y^{b^{3}-c^{3}} \cdot y^{c^{3}-a^{3}} \\
& =y^{y^{3}-b^{3}+b^{3}-c^{3}+c^{3}-a^{3}} \\
& =y^{0}=1
\end{aligned}
$$

[39] If the salary of P is 25% lower than that of Q and the salary of R is 20% higher than that of Q, the ratio of the salary of R and P will be:
(a) $5: 8$
(b) $8: 5$
(c) $5: 3$
(d) $3: 5$

Answer:

(b) Let Salary of $\mathrm{Q}=100$

Salary of $P=100-25 \%$ of 100

$$
=100-25
$$

$$
=75
$$

Salary of R $=100+20 \%$ of 100
$=100+20$
$=120$
Ratio of salary of R and $P=120: 75=8: 5$
[40] If $x^{2}+y^{2}=7 x y$, then $\log \frac{1}{3}(x+y)=$ \qquad .
(a) $(\log x+\log y)$
(b) $\frac{1}{2}(\log x+\log y)$
(c) $\frac{1}{3}(\log x / \log y)$
(d) $\frac{1}{3}(\log x+\log y)$

Answer:
(b) If $x^{2}+y^{2}=7 x y$
$x^{2}+y^{2}+2 x y=7 x y+2 x y$
$(x+y)^{2}=9 x y$
taking log on both side
$\log (x+y)^{2}=\log 9 x y$
$2 \log (x+y)=\log 9+\log x+\log y$
$2 \log (x+y)=\log 3^{2}+\log x+\log y$

$$
\begin{aligned}
& 2 \log (x+y)=2 \log 3+\log x+\log y \\
& 2 \log (x+y)-2 \log 3=\log x+\log y \\
& 2\left[\log \frac{(x+y)}{3}\right]\left[\log \frac{(x+y)}{3}\right] \\
& =\log x+\log y \\
& \log \frac{(x+y)}{3}=\frac{1}{2}[\log x+\log y]
\end{aligned}
$$

[41] A person has assets worth $₹ 1,48,200$. He wish to divide it amongst his wife, son and daughter in the ratio 3:2:1 respectively. From this assets, the share of his son will be:
(a) ₹ 24,700
(b) ₹ 49,400
(c) ₹ 74,100
(d) ₹ 37,050

Answer:

(b) A person has Assets worth $=₹ 1,48,200$

> Ratio of share of wife, son \& daughter

$$
=3: 2: 1
$$

$$
\text { Sum of Ratio }=3+2+1=6
$$

$$
\text { Share of Son }=\frac{2}{6} \times 1,48,200
$$

$$
=49,400
$$

[42] If $x=\log _{24} 12, y=\log _{36} 24$ and $z=\log _{48} 36$, then $x y z+1=$ \qquad
(a) $2 x y$
(b) $2 x z$
(c) $2 y z$
(d) 2

Answer:

(c) If $x=\log _{24} 12, y=\log _{36} 24$ and $z=\log _{48} 36$ then

$$
\begin{aligned}
& X Y Z+1 \\
& =\log _{24} 12 \times \log _{36} 24 \times \log _{48} 36+1 \\
& =\frac{\log 12}{\log 24} \cdot \frac{\log 24}{\log 36} \cdot \frac{\log 36}{\log 48}+1 \\
& =\frac{\log 12}{\log 48}+1 \\
& =\frac{\log 12+\log 48}{\log 48}
\end{aligned}
$$

[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
\begin{aligned}
& =\frac{\log (12 \times 48)}{\log 48} \\
& =\frac{\log (576)}{\log 48} \\
& =\frac{\log 24^{2}}{\log 48} \\
& =\frac{2 \log 24}{\log 48} \\
& =2 \cdot \frac{\log 24}{\log 36} \cdot \frac{\log 36}{\log 48} \\
& =2 \cdot \log _{36} 24 \cdot \log _{48} 36 \\
& =2 \mathrm{y} \mathrm{z}
\end{aligned}
$$

2014 - December

[43] If $\log x=a+b, \log y=a-b$ then the value of $\log \frac{10 x}{y^{2}}=$
(a) $1-a+3 b$
(b) $a-1+3 b$
(c) $a+3 b+1$
(d) $1-b+3 a$

Answer:

(a) Given $\log x=a+b, \log y=a-b$

$$
\begin{aligned}
\log \left(\frac{10 x}{y^{2}}\right) & =\log 10 x-\log y^{2} \\
& =\log 10+\log x-2 \log y \\
& =1+(a+b)-2(a-b) \\
& =1+a+b-2 a+2 b \\
& =1-a+3 b
\end{aligned}
$$

[44] If $x=1+\log _{p} q r, y=1+\log _{q} r p$ and $z=1+\log _{r} p q$ then the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=$ \qquad
(a) 0
(b) 1
(c) -1
(d) 3

Answer:

(b) If $x=1+\log _{p} q r, y=1+\log _{q} r p, z=1+\log _{r} p q$

$$
\begin{aligned}
& x=1+\frac{\log q r}{\log p} \\
& x=\frac{\log p+\log q r}{\log p} \\
& x=\frac{\log p q r}{\log p} \\
& \frac{1}{x}=\frac{\log p}{\log p r}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \frac{1}{y}=\frac{\log q}{\log p q r} \\
& \frac{1}{z}=\frac{\log r}{\log p q r} \\
& \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{\log p}{\log p q}+\frac{\log q}{\log p q}+\frac{\log r}{\log p q r} \\
& =\frac{\log p+\log q+\log r}{\log p q r} \\
& =\frac{\log p q r}{\log p q r} \\
& =1
\end{aligned}
$$

[45] For three months, the salary of a person are in the ratio $2: 4: 5$. If the difference between the product of salaries of the first two months and last two months is ₹ $4,80,00,000$; then the salary of the person for the second month will be:
(a) ₹ 4,000
(b) ₹ 6,000
(c) ₹ 8,000
(d) ₹ 12,000
(1 mark)

Answer:

(c) Ratio of the salary of a person in three months $=2: 4: 5$

Let,
Salary of $\mathrm{I}^{\text {st }}$ month $=2 x$
Salary of II ${ }^{\text {nd }}$ month $=4 x$
[Chapter - 1] Ratio and Proportion, Indices, Logarithms
Salary of IIIr month $=5 x$
Given
(Salary of Product of last two months) - (Salary of Product I ${ }^{\text {st }}$ two months)

$$
=4,80,00,000
$$

$(4 x .5 x)-(2 x .4 x)=4,80,00,000$

$$
20 x^{2}-8 x^{2}=4,80,00,000
$$

$$
12 x^{2}=4,80,00,000
$$

$$
x^{2}=40,00,000
$$

$$
x=2,000
$$

Salary of the person for second month $=4 x=4 \times 2,000=8,000$

2015 - JUNE

[46] A dealer mixes rice costing ₹ 13.84 per Kg . with rice costing ₹ 15.54 and sells the mixture at ₹ 17.60 per Kg . So, he earns a profit of 14.6% on his sale price. The proportion in which he mixes the two qualities of rice is:
(a) $3: 7$
(b) $5: 7$
(c) $7: 9$
(d) $9: 11$

Answer:

(a) Let SP of mixture is ₹ 100

$$
\text { Then Profit }=14.6 \% \text { of } 100
$$

$$
\text { = } 14.6
$$

$$
\text { CP of mixture }=(100-14.6)
$$

$$
=85.4
$$

\because If $S P$ is ₹ 100 then $C P=85.4$
\therefore If $S P$ is $₹ 1$ then $C P=\frac{85.4}{100}$
$\therefore \quad$ If SP is ₹ 17.60 then $\mathrm{CP}=\frac{85.4}{100} \times 17.60$

$$
=15.0304
$$

$\therefore \quad$ CP of the Mixture per $\mathrm{kg}=₹ 15.0304$
$2^{\text {nd }}$ difference $=$ Profit by SP 1 kg of $2^{\text {nd }}$ kind @ ₹ 15.0304
$=15.54-15.0304$
$=0.5096$
$1^{\text {st }}$ difference $=₹ 15.0304-13.84$
= ₹ 1.1904
The Require Ratio $=\left(2^{\text {nd }}\right.$ difference $):\left(1^{\text {st }}\right.$ difference $)$
$=0.5096: 1.1904$
$=3: 7$
[47] If $p^{x}=q, q^{y}=r$ and $r^{2}=p^{6}$, then the value of $x y z$ will be:
(a) 0
(b) 1
(c) 3
(d) 6

Answer:
(d) If $\mathrm{p}^{\mathrm{x}}=\mathrm{q}, \mathrm{q}^{\mathrm{y}}=\mathrm{r}$ and $\mathrm{r}^{\mathrm{z}}=\mathrm{p}^{6}$

$$
q=p^{x}, q^{y}=r \text { and } r^{z}=p^{6}
$$

$$
\begin{array}{ll}
\left(q^{y}\right)^{z} & =p^{6} \\
{\left[\left(p^{x}\right)^{y}\right]^{z}} & =p^{6}
\end{array}
$$

$$
\left[\left(p^{x}\right)^{y}\right]^{z}=p^{6}
$$

$$
\mathrm{p}^{x y z}=\mathrm{p}^{6}=x y z=6
$$

[48] If $\log x=m+n$ and $\log y=m-n$, then $\log \left(10 x / y^{2}\right)=$
(a) $3 n-m+1$
(b) $3 m-n+1$
(c) $3 n+n+1$
(d) $3 m+n+1$

Answer:

(a) $\log x=m+n$ and $\log y=m-n$

$$
\text { Then } \begin{aligned}
\log \left(\frac{10 x}{y^{2}}\right) & =\log 10 x-\log y^{2} \\
& =\log 10+\log x-2 \log y \\
& =1+\log x-2 \log y \\
& =1+(m+n)-2(m-n) \\
& =1+m+n-2 m+2 n \\
& =3 n-m+1
\end{aligned}
$$

[49] If $15\left(2 p^{2}-q^{2}\right)=7 p q$, where p and q are positive, then $p: q$ will be:
(a) $5: 6$
(b) $5: 7$
[Chapter - 1] Ratio and Proportion, Indices, Logarithms
(c) $3: 5$
(d) $8: 3$
(1 mark)

Answer:

(a) If $15\left(2 p^{2}-q^{2}\right)=7 p q$

$$
30 p^{2}-15 q^{2}=7 p q
$$

$$
30 p^{2}-7 p q-15 q^{2}=0
$$

$$
30 p^{2}-25 p q+18 p q-15 q^{2}=0
$$

$$
5 p(6 p-5 q)+3 q(6 p-5 q)=0
$$

$$
(6 p-5 q)(5 p+3 q)=0
$$

If $\quad 6 p-5 q=0$ and $5 p+3 q=0$
$6 p=5 q 5 p=-3 q$
$\frac{\mathrm{p}}{\mathrm{q}}=\frac{5}{6}=\mathrm{p}: \mathrm{q}=5: 6 \frac{\mathrm{p}}{\mathrm{q}}=\frac{-3}{5}$
(not possible)

2015 - DECEMBER
[50] The ratio of third proportion of 12,30 to the mean proportion of 9,25 is:
(a) $2: 1$
(b) $5: 1$
(c) $7: 15$
(d) $3: 5$

Answer:

(b) The third proportion of 12,30
$c=\frac{b^{2}}{a}=\frac{(30)^{2}}{12}=\frac{900}{12}=75$
The Mean proportion of 9,25
$\mathrm{b}=\sqrt{\mathrm{ac}}=\sqrt{9 \times 25}=\sqrt{225}=15$
Ratio of third proportion of 12,30
and Mean proportion of $9,25=75: 15$

$$
=5: 1
$$

[51] The value of $\log _{5} 3 \times \log _{3} 4 \times \log _{2} 5$.
(a) 0
(b) 1
(c) 2
(d) $\frac{1}{2}$
(1 mark)

Answer:

(c) $\log _{5} 3 \times \log _{3} 4 \times \log _{2} 5$

$$
\begin{aligned}
& =\frac{\log 3}{\log 5} \times \frac{\log 4}{\log 3} \times \frac{\log 5}{\log 2} \\
& =\frac{\log 4}{\log 2} \\
& =\frac{\log 2^{2}}{\log 2} \\
& =\frac{2 \log 2}{\log 2}=2
\end{aligned}
$$

[52] What number must be added to each of the numbers $10,18,22,38$ to make the numbers is proportion?
(a) 2
(b) 4
(c) 8
(d) None of these.

Answer:

(a) Let x to be added

Then $(10+x),(18+x),(22+x),(38+x)$ are in prop.
Product of Extremes $=$ Product of Mean
$(10+x)(38+x)=(18+x)(22+x)$
$380+10 x+38 x+x^{2}=396+18 x+22 x+x^{2}$
$48 x+380=396+40 x$
$48 x-40 x=396-380$
$8 x=16$
$x \quad=2$
[53] The value of $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$ is :
(a) $\frac{1}{2}$
(b) $\frac{3}{2}$
(c) $\frac{2}{3}$
(d) 2

Answer:

(b) $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{2^{n}+2^{n} \cdot 2^{-1}}{2^{n} \cdot 2^{1}-2^{n}}$

$$
\begin{aligned}
& =\frac{z^{\prime}\left(1+2^{-1}\right)}{\not 2^{n}\left(2^{1}-1\right)} \\
& =\frac{\left(\frac{1}{1}+\frac{1}{2}\right)}{(2-1)} \\
& =\frac{\left(\frac{2+1}{2}\right)}{1} \\
& =\left(\frac{3}{2}\right)
\end{aligned}
$$

2016 - JUNE

[54] The integral part of a logarithm is called \qquad and the decimal part of a logarithm is called \qquad .
(a) Mantissa, Characteristic
(b) Characteristic, Mantissa
(c) Whole, Decimal
(d) None of these.

Answer:

(b) The integral part of a logarithms is called Characteristic and the decimal part of a logarithm is called mantissa.
[55] The value of $\left[\frac{x^{2}-(y-z)^{2}}{(x+z)^{2}-y^{2}}+\frac{y^{2}-(x-z)^{2}}{(x+y)^{2}-z^{2}}+\frac{z^{2}-(x-y)^{2}}{(y+z)^{2}-x^{2}}\right]$ is
(a) 0
(b) 1
(c) -1
(d) ∞

Answer:
(b) $\frac{x^{2}-(y-z)^{2}}{(x+z)^{2}-y^{2}}+\frac{y^{2}-(x-z)^{2}}{(x+y)^{2}-z^{2}}+\frac{z^{2}-(x-y)^{2}}{(y+z)^{2}-x^{2}}$

$$
\begin{aligned}
& =\frac{(x+y-z)(x-y+z)}{(x+z+y)(x+z-y)}+\frac{(y+x-z)(y-x+z)}{(x+y+z)(x+y-z)}+\frac{(z+x-y)(z-x+y)}{(y+z+x)(y+z-x)} \\
& =\frac{x+y-z}{x+y+z}+\frac{y+z-x}{x+y+z}+\frac{z+x-y}{x+y+z} \\
& =\frac{x+y-z+y+z-x+z+x-y}{x+y+z} \\
& =\frac{x+y+z}{x+y+z}=1
\end{aligned}
$$

[56] X, Y, Z together starts a business. If X invests 3 times as much as Y invests and Y invests two third of what Z invests, then the ratio of capitals of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ is:
(a) 3:9:2
(b) $6: 3: 2$
(c) $3: 6: 2$
(d) $6: 2: 3$

Answer:

(d) Given $x=3 y$ and $y=\frac{2}{3} z$

$$
\begin{aligned}
& \frac{x}{y}=\frac{3}{1} \text { and } \frac{y}{z}=\frac{2}{3} \\
& x: y=3: 1 \text { and } y: z=2: 3 \\
& =3 \times 2: 1 \times 2 \\
& =6: 2
\end{aligned}
$$

$$
x: y: z=6: 2: 3
$$

[57] If $\log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$, then the value of X is:
(a) 2
(b) 3
(c) 16
(d) 8

Answer:
(c) If $\log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$

$$
\begin{aligned}
& \Rightarrow \log _{4}\left\{\frac{\left(x^{2}+x\right)}{(x+1)}\right\}=2 \\
& \Rightarrow \log _{4}\left\{\frac{x(x+1)}{(x+1)}\right\}=2 \\
& \Rightarrow \log _{4} x=2
\end{aligned}
$$

[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
x=16
$$

[58] Value of $\frac{1}{\log _{3}^{60}}+\frac{1}{\log _{4}^{60}}+\frac{1}{\log _{5}^{60}}$ is :
(a) 0
(b) 1
(c) 5
(d) 60

Answer:
(b) $\frac{1}{\log _{3} 60}+\frac{1}{\log _{4} 60}+\frac{1}{\log _{5} 60}$

$$
\begin{aligned}
& =\log _{60} 3+\log _{60} 4+\log _{60} 5 \\
& =\log _{60}(3 \times 4 \times 5) \\
& =\log _{60} 60 \\
& =1
\end{aligned}
$$

2016 - DeCEMBER

[59] If $3^{x}=5^{y}=75^{z}$, then
(a) $x+y-z=0$
(b) $\frac{2}{x}+\frac{1}{y}=\frac{1}{z}$
(C) $\frac{1}{x}+\frac{2}{y}=\frac{1}{z}$
(d) $\frac{2}{x}+\frac{1}{z}=\frac{1}{y}$

Answer:

(c) If $\quad 3^{x}=5^{y}=75^{z}=k$ (let)
then $\quad 3^{x}=k, 5^{y}=k, 75^{z}=k$

$$
3=k^{1 / x}, 5=k^{1 / y}, 75=k^{1 / 2}
$$

we know that

$$
\begin{aligned}
& 75=3 \times 5 \times 5 \\
& k^{\frac{1}{z}}=k^{\frac{1}{x}} \cdot k^{\frac{1}{y}} \cdot k^{\frac{1}{y}}
\end{aligned}
$$

$$
k^{\frac{1}{z}}=k^{\frac{1}{x}+\frac{1}{y}+\frac{1}{y}}
$$

on comparing
$\frac{1}{z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}$
$\frac{1}{z}=\frac{1}{x}+\frac{2}{y}$
$\frac{1}{x}+\frac{2}{y}=\frac{1}{z}$
[60] If $\log 2=0.3010$ and $\log 3=0.4771$, then the value of $\log 24$ is:
(a) 1.0791
(b) 1.7323
(c) 1.3801
(d) 1.8301

Answer:
(c) If $\log 2=0.3010$ and $\log 3=0.4771$
then $\log 24=\log (2 \times 2 \times 2 \times 3)$
$=\log 2+\log 2+\log 2+\log 3$
$=3 \log 2+\log 3$
$=3 \times 0.3010+0.4771$
$=0.9030+0.4771$
$=1.3801$
[61] If $a b c=2$, then the value of $\frac{1}{1+a+2 b^{-1}}+\frac{1}{1+\frac{1}{2} b+c^{-1}}+\frac{1}{1+c+a^{-1}}$ is:
(a) 1
(b) 2
(c) 3
(d) $\frac{1}{2}$

Answer:

(a) If $a b c=2$

$$
\mathrm{ab}=\frac{2}{\mathrm{c}}=2 \mathrm{c}^{-1} \quad \mathrm{a}=\frac{2}{\mathrm{bc}}=2 \mathrm{~b}^{-1} \mathrm{c}^{-1}
$$

$$
\begin{array}{ll}
b c=\frac{2}{a}=2 a^{-1} & b=\frac{2}{c a}=2 c^{-1} a^{-1} \\
c a=\frac{2}{b}=2 b^{-1} & c=\frac{2}{a b}=2 a^{-1} b^{-1}
\end{array}
$$

Given

$$
\frac{1}{1+a+2 b^{-1}}+\frac{1}{1+\frac{1}{2} b+c^{-1}}+\frac{1}{1+c+a^{-1}}
$$

$$
=\frac{1}{1+a+2 b^{-1}}+\frac{2 b^{-1}}{2 b^{-1}\left(1+\frac{1}{2} b+c^{-1}\right)}+\frac{a}{a\left(1+c+a^{-1}\right)}
$$

$$
=\frac{1}{\left(1+a+2 b^{-1}\right)}+\frac{2 b^{-1}}{2 b^{-1}+1+2 b^{-1} c^{-1}}+\frac{a}{a+a c+1}
$$

$$
=\frac{1}{1+a+2 b^{-1}}+\frac{2 b^{-1}}{2 b^{-1}+1+a}+\frac{a}{a+2 b^{-1}+1}
$$

$$
=\frac{1+2 b^{-1}+a}{1+a+2 b^{-1}}
$$

$$
=1
$$

[62] There are total 23 coins of ₹ 1 , ₹ 2 and ₹ 5 in a bag. If their value is ₹ 43 and the ratio of coins of ₹ 1 and ₹ 2 is $3: 2$. Then the number of coins of $₹ 1$ is:
(a) 12
(b) 5
(c) 10
(d) 14
(1 mark)

Answer:

(a) Total no. of coins $=23$

Ratio of ₹ 1 coin : ₹ 2 coins $=3: 2$
let No. of ₹ 1 coins $=3 x$
No. of ₹ 2 coins $=2 x$
No. of ₹ 5 coins $=23-3 x-2 x$
$=23-5 x$
Total value of all coins $=43$
$3 x \times 1+2 x \times 2+(23-5 x) 5=43$

$$
\begin{aligned}
& 3 x+4 x+115-25 x=43 \\
&-18 x=43-115 \\
&-18 x=-72 \\
& x=\frac{-72}{-18}=4
\end{aligned}
$$

No. of $₹ 1$ coins $=3 x=3 \times 4=12$

2017 - JUNE

[63] If $a: b=2: 3, b: c=4: 5$ and $c: d=6: 7$, then $a: d$ is:
(a) $24: 35$
(b) $8: 15$
(c) $16: 35$
(d) $7: 15$

Answer:

(c) $\mathrm{a}: \mathrm{b}=2: 3 \Rightarrow \frac{\mathrm{a}}{\mathrm{b}}=\frac{2}{3}$ \qquad
$\mathrm{b}: \mathrm{c}=4: 5 \Rightarrow \frac{\mathrm{~b}}{\mathrm{c}}=\frac{4}{5}$ \qquad
$c: d=6: 7 \Rightarrow \frac{c}{d}=\frac{6}{7}$ \qquad
Multiply equation (i) \& (ii) \& (iii)

$$
\frac{a}{b} \times \frac{b}{c} \times \frac{c}{d}=\frac{2}{3} \times \frac{4}{5} \times \frac{6}{7}=\frac{16}{35}
$$

[64] The value of $\log \left(1^{3}+2^{3}+3^{3}+\ldots \ldots . n^{3}\right)$ is equal to:
(a) $3 \log 1+3 \log 2+\ldots \ldots+3 \log n$
(b) $2 \log n+2 \log (n+1)-2 \log 2$
(c) $\log n+\log (n+1)+\log (2 n+1)-\log 6$
(d) 1

Answer:

(b) $\log \left(1^{3}+2^{3}+3^{3}+\cdots-\cdots+n^{3}\right)$

$$
\begin{aligned}
& =\log \left(O^{3}\right) \\
& =\log \left[\frac{n(n+1)}{2}\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \log \left[\frac{n(n+1)}{2}\right] \\
& =2[\log n+\log (n+1)-\log 2] \\
& =2 \log n+2 \log (n+1)-2 \log 2
\end{aligned}
$$

[65] If $\mathrm{a}=\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}$ and $\mathrm{b}=\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$ then the value of $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$ is equal to:
(a) 480
(b) 482
(c) 484
r
(d) 486

Answer:

(b) If $\mathrm{a}=\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}$ and $\mathrm{b}=\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}$

$$
\begin{aligned}
a+b & =\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}+\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}} \\
& =\frac{(\sqrt{6}+\sqrt{5})^{2}+(\sqrt{6}-\sqrt{5})^{2}}{(\sqrt{6}-\sqrt{5})(\sqrt{6}+\sqrt{5})} \\
& =\frac{6+5+2 \sqrt{30}+6+5-2 \sqrt{30}}{(\sqrt{6})^{2}-(\sqrt{5})^{2}} \\
& =\frac{22}{6-5}=\frac{22}{1}=22
\end{aligned}
$$

$$
a \cdot b=\left(\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}-\sqrt{5}}\right)\left(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5}}\right)=1
$$

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{b^{2}+a^{2}}{a^{2} b^{2}}=\frac{(a+b)^{2}-2 a b}{(a b)^{2}}
$$

$$
=\frac{(22)^{2}-2 \times 1}{(1)^{2}}=\frac{484-2}{1}=482
$$

2017 - DECEMBER

[66] The ratio of the number of ₹ 5 coins and $₹ 10$ coins is $8: 15$. If the value of $₹ 5$ coins is $₹ 360$, then the number of $₹ 10$ coins will be:
(a) 72
(b) 120
(c) 135
(d) 185
(1 mark)

Answer:

(c) Ratio of ₹ 5 coins and ₹ 10 coins = 8:15

$$
\begin{aligned}
\text { Let the No. of ₹ } 5 \text { coins } & =8 x \\
\text { and the No. of ₹ } 10 \text { coins } & =15 x \\
\text { The value of ₹ } 5 \text { coins } & =₹ 5 \times 8 x \\
360 & =40 x \\
x & =\frac{360}{40} \\
x & =9
\end{aligned}
$$

No. of $₹ 10$ coins $=15 x$

$$
\begin{aligned}
& =15 \times 9 \\
& =135
\end{aligned}
$$

[67] If $\log _{3}\left[\log _{4}\left(\log _{2} x\right)\right]=0$, then the value of ' x ' will be:
(a) 4
(b) 8
(c) 16
(d) 32

Answer:
(c) If $\log _{3}\left[\log _{4}\left(\log _{2} x\right)\right]=0$

$$
\begin{aligned}
& \log _{4}\left(\log _{2} x\right)=3^{0} \quad\left[\because \log _{a} b=x \Rightarrow b=a^{x}\right] \\
& \log _{4}\left(\log _{2} x\right)=1 \\
& \log _{2} x=4^{1} \\
& \log _{2} x=4 \\
& x=2^{4} \\
& x=16
\end{aligned}
$$

[68] If $\log \left(\frac{x-y}{2}\right)=\frac{1}{2}(\log x+\log y)$, then the value of $x^{2}+y^{2}=$ \qquad
(a) $2 x y$
(b) $4 x y$
(c) $2 x^{2} y^{2}$
(d) $6 x y$

Answer:

(d) If $\log \left(\frac{x-y}{2}\right)=\frac{1}{2}(\log x+\log y)$

$$
2 \log \left(\frac{x-y}{2}\right)=\log x+\log y
$$

[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
\begin{aligned}
& \log \left(\frac{x-y}{2}\right)^{2}=\log (x y) \\
& \Rightarrow\left(\frac{x-y}{2}\right)^{2}=x y \\
& \Rightarrow\left(\frac{x-y}{4}\right)^{2}=x y \\
& \Rightarrow x^{2}+y^{2}-2 x y=4 x y \\
& \Rightarrow x^{2}+y^{2}=4 x y+2 x y \\
& \Rightarrow x^{2}+y^{2}=6 x y
\end{aligned}
$$

[69] If $\frac{1}{2}, \frac{1}{3}, \frac{1}{5}$ and $\frac{1}{x}$ are in proportion, then the value of ' x ' will be:
(a) $\frac{15}{2}$
(b) $\frac{6}{5}$
(c) $\frac{10}{3}$
(d) $\frac{5}{6}$

Answer:

(a) If $\frac{1}{2}, \frac{1}{3}, \frac{1}{5}, \frac{1}{x}$ are in proportion
then, product of extremes $=$ Product of means
$\frac{1}{2} \times \frac{1}{x}=\frac{1}{3} \times \frac{1}{5}$
$\frac{1}{2 x}=\frac{1}{15}$
$2 x=15$
$x=15 / 2$

2018 - MAY
[70] If $p: q$ is the sub-duplicate ratio of $p-x^{2}: q-x^{2}$, then x^{2} is:
(a) $\frac{p}{p+q}$
(b) $\frac{q}{p+q}$
(c) $\frac{q p}{p-q}$
(d) None.
(1 mark)

Answer:

(d) Sub duplicate ratio of $\left(p-x^{2}\right):\left(q-x^{2}\right)=\sqrt{p-x^{2}}: \sqrt{q-x^{2}}$

$$
\begin{aligned}
& p: q=\sqrt{p-x^{2}}: \sqrt{q-x^{2}} \\
& \frac{p}{q}=\frac{\sqrt{p-x^{2}}}{\sqrt{q-x^{2}}}
\end{aligned}
$$

an squaring both side

$$
\begin{aligned}
& \frac{p^{2}}{q^{2}}=\frac{p-x^{2}}{q-x^{2}} \\
& p^{2}\left(q-x^{2}\right)=q^{2}\left(p-x^{2}\right) \\
& p^{2} q-p^{2} x^{2}=q^{2} p-q^{2} x^{2} \\
& p^{2} q-q^{2} p=p^{2} x^{2}-q^{2} x^{2} \\
& p q(p-q)=\left(p^{2}-q^{2}\right) x^{2} \\
& p q(p-q)=(p+q)(p-q) x^{2} \\
& x^{2}=\frac{p q(p-q)}{(p+q)(p-q)} \\
& x^{2}=\frac{p q}{(p+q)}
\end{aligned}
$$

[71] The value of the expression:
$a^{\log _{b} \cdot \log _{b}^{c} \cdot \log _{a}^{d} \cdot \log _{a} t}$
(a) t
(b) abcdt
(c) $(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{t})$
(d) None

Answer:

(a) $a^{\log _{a}^{b} \log _{c}^{p} \log _{c}^{p} \log _{d}^{d}}$

$$
\begin{aligned}
& =a \frac{\log ^{b}}{\log ^{a}} \cdot \frac{\log ^{c}}{\log ^{b}} \cdot \frac{\log ^{d}}{\log ^{c}} \cdot \frac{\log ^{t}}{\log ^{d}} \\
& =a \frac{\log ^{t}}{\log ^{a}}
\end{aligned}
$$

[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
\begin{aligned}
& =a \log _{a}^{t} \quad\left[\because \quad e^{\log _{e} x}=x\right] \\
& =\mathrm{t}
\end{aligned}
$$

[72] The mean proportional between 24 and 54 is:
(a) 33
(b) 34
(c) 35
(d) 36

Answer:

(d) Mean proportion $\mathrm{b}=\sqrt{\mathrm{ac}}$

$$
\begin{aligned}
& =\sqrt{24 \times 54} \\
& =\sqrt{1,296} \\
& =36
\end{aligned}
$$

[73] The value of $\log _{4} 9 . \log _{3} 2$ is:
(a) 3
(b) 2
(c) 9
(d) 1

Answer:

(d) $\log _{4} 9 \cdot \log _{3} 2=\frac{\log 9}{\log 4} \cdot \frac{\log 2}{\log 3}$

$$
\begin{aligned}
& =\frac{\log 3^{2}}{\log 2^{2}} \cdot \frac{\log 2}{\log 3} \\
& =\frac{2 \log 3}{2 \log 2} \cdot \frac{\log 2}{\log 3} \\
& =1
\end{aligned}
$$

[74] $\quad \frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$
(a) $\frac{1}{2}$
(b) $\frac{3}{2}$
(c) $\frac{2}{3}$
(d) $\frac{1}{3}$

Answer:

(b) $\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}=\frac{2^{n}+2^{n} \cdot 2^{-1}}{2^{n} \cdot 2^{+1}-2^{n}}$

$$
\begin{aligned}
& =\frac{2^{n}+\left(1+2^{-1}\right)}{2^{n} \cdot(2-1)} \\
& =\frac{\left(1+\frac{1}{2}\right)}{1} \\
& =\frac{\frac{3}{2}}{1} \\
& =\frac{3}{2}
\end{aligned}
$$

2018 - NOVEMBER

[75] $\frac{3 x-2}{5 x+6}$ is the duplicate ratio of $\frac{2}{3}$ then find the value of x :
(a) 2
(b) 6
(c) 5
(d) 9
(1 mark)
Answer:
(b) $\because \quad \frac{3 x-2}{5 x+6}$ is the duplicate ratio of $\frac{2}{3}$
i.e. $\quad \frac{3 x-2}{5 x+6}=\frac{2^{2}}{3^{2}}$
$\Rightarrow \quad \frac{3 x-2}{5 x+6}=\frac{4}{9}$
$27 \mathrm{x}-18=20 \mathrm{x}+24$
$27 x-20 x=24+18$
$7 x=42$
[Chapter - 1] Ratio and Proportion, Indices, Logarithms
[76] $\quad \frac{2^{m+1} \times 3^{2 m-n+3} \times 5^{n+m+4} \times 6^{2 n+m}}{6^{2 m+n} \times 10^{n+1} \times 15^{m+3}}$
(a) $3^{2 m-2 n}$
(b) $3^{2 n-2 m}$
(c) 1
(d) None of the above

Answer:
(c) $\frac{2^{m+1} \times 3^{2 m-n+3} \times 5^{n+m+4} \times 6^{2 n+m}}{6^{2 m+n} \times 10^{n+1} \times 15^{m+3}}$

$$
\begin{aligned}
& =\frac{2^{m+1} \times 3^{2 m-n+3} \times 5^{n+m+4} \times(2 \times 3)^{2 n+m}}{(2 \times 3)^{2 m+n} \times(2 \times 5)^{n+1} \times(3 \times 5)^{m+3}} \\
& =\frac{2^{m+1} \times 3^{2 m-n+3} \times 5^{n+m+4} \times 2^{2 n+m} \times 3^{2 n+m}}{2^{2 m+n} \times 3^{2 m+n} \times 2^{n+1} \times 5^{n+1} \times 3^{m+3} \times 5^{m+3}} \\
& =\frac{2^{m+1+2 n+m} \times 3^{2 m-n+3+2 n+m} \times 5^{n+m+4}}{2^{2 m+n+n+1} \times 3^{2 m+n+m+3} \times 5^{n+1+m+3}} \\
& =\frac{2^{2 m+2 n+1} \times 3^{3 m+n+3} \times 5^{m+n+4}}{2^{2 m+2 n+1} \times 3^{3 m+n+3} \times 5^{m+n+4}}=1
\end{aligned}
$$

[77] If $x: y: z=7: 4: 11$ then $\frac{x+y+z}{z}$ is:
(a) 2
(b) 3
(c) 4
(d) 5

Answer:
(a) If $x: y: z=7: 4: 11$

Let $x=7 k, y=4 k, z=11 k$

$$
\frac{x+y+z}{2}=\frac{7 k+4 k+11 k}{11 k}=\frac{22 k}{11 k}=2
$$

[78] $\log _{2} \log _{2} \log _{2} 16=$?
(a) 0
(b) 3
(c) 1
(d) 2

Answer:
(c) $\log _{2} \log _{2} \log _{2}{ }^{16}$
$=\log _{2} \log _{2}\left(\log _{2}{ }^{24}\right)$
$=\log _{2} \log _{2}{ }^{4} \log _{2}{ }^{2}$

$$
\begin{aligned}
& =\log _{2} \log _{2}{ }^{4} \quad\left(\because \log _{2}{ }^{2}=1\right) \\
& =\log _{2} \log _{2}{ }^{22} \\
& =\log _{2}{ }^{2} \cdot \log _{2}{ }^{2} \\
& =1 \times 1 \\
& =1
\end{aligned}
$$

2019 - JUNE
[79] If the ratio of two numbers is $7: 11$. If 7 is added to each number then the new ratio will be $2: 3$ then the numbers are.
(a) 49, 77
(b) 42, 45
(c) 43,42
(d) 39, 40

Answer:
(a) Ratio of two Numbers $=7$: 11

Let $\mathrm{I}^{\text {st }} \mathrm{No}=7 \mathrm{x}$
$11^{\text {nd }}$ No $=11 \mathrm{x}$
Given Condition

$$
\begin{aligned}
&(7 x+7):(11 x+7)=2: 3 \\
& \frac{7 x+7}{11 x+7}=\frac{2}{3} \\
& 21 x+21= 22 x+14 \\
& 21-14= 22 x-21 x \\
& 7= x \\
& I^{\text {st }} \mathrm{No}=7 x=7 \times 7=49 \\
& \text { Ind }^{\text {nd }} \mathrm{No}=11 \mathrm{x}=11 \times 7=77
\end{aligned}
$$

[80] If $2^{x^{2}}=3^{y^{2}}=12^{z^{2}}$ then
(a) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{1}{z^{2}}$
(b) $\frac{1}{x^{2}}+\frac{2}{y^{2}}=\frac{1}{z^{2}}$
(c) $\frac{2}{x^{2}}+\frac{1}{y^{2}}=\frac{1}{z^{2}}$
(d) None

Answer:
(c) If $2^{x^{2}}=3^{y^{2}}=12^{z^{2}}=K$
$2^{x^{2}}=K, 3^{y^{2}}=K, 12^{z^{2}}=K$
$2=K^{\frac{1}{x^{2}}}, 3=K^{\frac{1}{y^{2}}}, 12=K^{\frac{1}{z^{2}}}$
Now,

$$
\begin{aligned}
& 12=2 \times 2 \times 3 \\
& \mathrm{~K}^{\frac{1}{\mathrm{z}^{2}}}=\mathrm{K}^{\frac{1}{\mathrm{x}^{2}}} \times \mathrm{K}^{\frac{1}{\mathrm{x}^{2}}} \times \mathrm{K}^{\frac{1}{\mathrm{y}^{2}}} \\
& \mathrm{~K}^{\frac{1}{\mathrm{z}^{2}}}=\mathrm{K}^{\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}}
\end{aligned}
$$

On comparing

$$
\begin{aligned}
& \frac{1}{z^{2}}=\frac{1}{x^{2}}+\frac{1}{x^{2}}+\frac{1}{y^{2}} \\
& \frac{1}{z^{2}}=\frac{2}{x^{2}}+\frac{1}{y^{2}}
\end{aligned}
$$

[81] The value of $\log _{5},\left(1+\frac{1}{5}\right)+\log _{5}\left(1+\frac{1}{6}\right)+----------+\log _{5},\left(1+\frac{1}{624}\right)$
(a) 2
(b) 3
(c) 5
(d) 0

Answer:

(b) If $\log _{5}\left(1+\frac{1}{5}\right)+\log _{5}\left(1+\frac{1}{6}\right)+\ldots \ldots \ldots \ldots \ldots \ldots+\log _{5}\left(1+\frac{1}{624}\right)$

$$
=\log \left(\frac{6}{5}\right)+\log \left(\frac{7}{6}\right) \log \left(\frac{8}{7}\right)+\ldots \ldots \ldots \ldots \ldots \ldots+\log \left(\frac{625}{624}\right)
$$

$$
=\log _{5}\left(\frac{6}{5} \times \frac{7}{6} \times \frac{8}{7} \times \ldots \ldots \ldots \frac{624}{623} \times \frac{625}{624}\right)
$$

$$
=\log _{5}\left(\frac{625}{5}\right)
$$

$$
\begin{aligned}
=\log _{5}(125)=\log _{5} 5^{3} & =3 \log _{5} 5 \\
& =3 \times 1 \\
& =3
\end{aligned}
$$

[82] $\log _{2 \sqrt{2}}(512): \log _{3 \sqrt{2}} 324=$
(a) $128: 81$
(b) $2: 3$
(c) $3: 2$
(d) None

Answer:
(c) $\log _{2 \sqrt{2}} 512: \log _{3 \sqrt{2}} 324$

$$
=\frac{\log 512}{\log 2 \sqrt{2}}: \frac{\log 324}{\log 3 \sqrt{2}}
$$

$$
=\frac{\log (8)^{3}}{\log \sqrt{2 \times 2 \times 2}}: \frac{\log 18^{2}}{\log \sqrt{3 \times 3 \times 2}}
$$

$$
=\frac{\log (8)^{3}}{\log (8)^{1 / 2}} \quad: \frac{\log (18)^{2}}{\log (18)^{1 / 2}}
$$

$$
=\frac{3 \log 8}{1 / 2 \log 8} \quad: \quad \frac{2 \log 18}{1 / 2 \log 18}
$$

$$
(3 \times 2) \quad: \quad(2 \times 2)
$$

$$
=6: 4
$$

$$
=3: 2
$$

[83] If $P=x^{1 / 3}+x^{-1 / 3}$ then $P^{3}=3 P=$
(a) 3
[Chapter - 1] Ratio and Proportion, Indices, Logarithms
(b) $\frac{1}{2}\left(x+\frac{1}{x}\right)$
(c) $\left(x+\frac{1}{x}\right)$
(d) $2\left(x+\frac{1}{x}\right)$

Answer:

(c) If $P=x^{1 / 3}+n^{-1 / p}$ then $P^{3}-3 P$

Given $P=x^{1 / 3}+x^{-1 / p}$
Cube on both side

$$
\begin{align*}
\mathrm{P}^{3} & =\left(\mathrm{x}^{1 / 3}+\mathrm{x}^{-1 / 2}\right)^{3} \tag{1}\\
\mathrm{P}^{3} & =\left(\mathrm{x}^{1 / 3}\right)^{3}+\left(\mathrm{x}^{-1 / 2}\right)^{3}+3 \mathrm{x}^{1 / 3} \cdot \mathrm{x}^{-1 / 3}\left(\mathrm{x}^{1 / 3}+\mathrm{x}^{-1 / 3}\right) \\
& =\mathrm{x}+\mathrm{x}^{-1}+3 \times 1 \times \mathrm{P} \\
\mathrm{P}^{3} & =\mathrm{x}+\frac{1}{\mathrm{x}}+3 \mathrm{P} \\
& \\
\mathrm{P}^{3} & =3 P=\mathrm{x}+\frac{1}{\mathrm{x}}
\end{align*}
$$

2019 - November

[84] The ratio of two numbers are $3: 4$. The difference of their squares is 28 Greater no. is:
(a) 8
(b) 12
(c) 24
(d) 64.

Answer:
(a) Let the two numbers be x and y

Greater no. $\Rightarrow \mathrm{y}$
Smaller no. $\Rightarrow \mathrm{x}$
According to question,

$$
\frac{x}{y}=\frac{3}{4} \quad-\text { Eq } 1 \quad \text { and } \quad y^{2}-x^{2}=28 \quad-\text { Eq } 2
$$

Further solving Eq 1
$x=\frac{3}{4} y \quad-E q 3$
Put Eq 3 in Eq 2
$y^{2}-\left(\frac{3}{4} y\right)^{2}=28$
$\frac{y^{2}}{1}-\frac{9 y^{2}}{16}=28$
$\frac{7 y^{2}}{16}=28$
$y^{2}=\frac{28 \times 16}{7}$
$y^{2}=64$
$\Rightarrow y=8$
\{square root both sides\}
So, the greater number i.e. y is equal to 8 .
[85] The price of scooter and moped are in the ratio 7:9. The price of moped is ₹ 1,600 more than that of scooter. Then the price of moped is:
(a) ₹ 7,200
(b) ₹ 5,600
(c) ₹ 800
(d) ₹ 700

Answer:

(a) $\frac{\text { Price of scooter }}{\text { Price of Moped }}=\frac{7}{9}$

Let; the price of scooter $=7 x$
and price of moped $=9 x$
According to question

$$
9 x=7 x+1600
$$

$\Rightarrow \quad 2 x=1600$
$\Rightarrow \quad x=₹ 800$
So, price of moped $=9 x=9(800)=₹ 7,200$
[86] $\log _{0.01} 10,000=$?
(a) 2
(b) -2
(c) 4
(d) -4

Answer:
(b) $\log _{0.01} 10,000$
$\Rightarrow \frac{\log 10,000}{\log 0.01}$ Since $\log _{a} b=\frac{\log b}{\log a}$
$\Rightarrow \frac{\log (10)^{4}}{\log \left(\frac{1}{100}\right)}$
$\because \log a^{n}=n \log a$
$\Rightarrow \frac{4 \times \log 10}{\log 1-\log 100}$
$\because \log \left(\frac{b}{a}\right)=\log b-\log a$
$\Rightarrow \frac{4 \times 1}{0-\log (10)^{2}}$
$\log 10=1$
$\log 1=0$
$\Rightarrow \frac{4}{-2 \log 10}=\frac{4}{-2 \times 1}=-2$
[87] Value of $\left[9^{n+\frac{1}{4}} \cdot \frac{\sqrt{3.3^{n}}}{3 \cdot \sqrt{3^{-n}}}\right]^{\frac{1}{n}}$
(a) 9
(b) 27
(c) 81
(d) 3

Answer:
(b) $=\left[\frac{9^{n+\frac{1}{4}} \sqrt{3^{(n+1)}}}{3 \cdot \sqrt{3^{-n}}}\right]^{\frac{1}{n}}$

$$
\begin{aligned}
& =\left[\frac{3^{2 n+\frac{1}{2}} \cdot 3^{\frac{(n+1)}{2}}}{3 \cdot 3^{-n / 2}}\right]^{\frac{1}{n}} \\
& =\left[\frac{3^{2 n+\frac{1}{2}+\frac{n}{2}+\frac{1}{2}}}{3^{1-n / 2}}\right]^{\frac{1}{n}} \\
& =\left[(3)^{\frac{5 n}{2}+1-1+\frac{n}{2}}\right]^{\frac{1}{n}} \\
& =\left[(3)^{\frac{6 n}{2}}\right]^{\frac{1}{n}} \\
& =(3)^{3} \\
& =27
\end{aligned}
$$

[88] If $x=\sqrt{3}+\frac{1}{\sqrt{3}}$ then $\left(x-\frac{\sqrt{126}}{\sqrt{42}}\right)\left(x-\frac{1}{x-\frac{2 \sqrt{3}}{3}}\right)=$?
(a) $5 / 6$
(b) $6 / 5$
(c) $2 / 3$
(d) $-3 / 5$

Answer:
(a) $x=\sqrt{3}+\frac{1}{\sqrt{3}}----------$-Equation (1)

$$
\begin{aligned}
& =(x-\sqrt{3})=\frac{1}{\sqrt{3}}-\cdots-\cdots-\text { Equation (2) }\left(x-\frac{1}{\sqrt{3}}\right)=\sqrt{3}-\text { Equation (3) } \\
& \left(x \frac{\sqrt{126}}{\sqrt{42}}\right)\left(x \frac{-1}{\left(x-\frac{2 \sqrt{3}}{\sqrt{3}}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(x \frac{-3 \sqrt{14}}{\sqrt{3} \times \sqrt{14}}\right)\left(x \frac{-1}{\frac{x-1}{\sqrt{3}} \frac{-1}{\sqrt{3}}}\right) \\
& (x-\sqrt{3})\left(x \frac{-1}{\sqrt{3} \frac{-1}{\sqrt{3}}}\right)
\end{aligned}
$$

\{from Equation (2) \& (3)\}
$\frac{1}{\sqrt{3}} \times\left(x \frac{-\sqrt{3}}{2}\right)$
$\frac{1}{\sqrt{3}} x-\frac{1}{2}$
$\frac{1}{\sqrt{3}}\left(\sqrt{3}+\frac{1}{\sqrt{3}}\right) \frac{-1}{2}$
$1+\frac{1}{3}-\frac{1}{2}$
$=\frac{5}{6}$

2020 - November

[89] if $a: b=3: 7$, then $3 a+2 b: 4 a+5 b=$?
(a) $23: 47$
(b) $27: 43$
(c) $24: 51$
(d) $29: 53$

Answer:
(a) If $\mathrm{a}: \mathrm{b}=3: 7$
let $a=3 k, b=7 k$

$$
\frac{3 a+2 b}{4 a+5 b}=\frac{3 \times 3 k+2 \times 7 k}{4 \times 3 k+5 \times 7 k}=\frac{9 k+14 k}{12 k+35 k}
$$

$$
\begin{aligned}
& =\frac{23 \mathrm{k}}{47 \mathrm{k}} \\
& =23: 47
\end{aligned}
$$

[90] if $\log _{a} \sqrt{3}=1 / 6$, find the value of ' a ':
(a) 9
(b) 81
(c) 27
(d) 3

Answer:
(c) If $\log _{a} \sqrt{3}=\frac{1}{6}$

$$
\begin{aligned}
& \sqrt{3}=a^{1 / 6} \\
& a^{1 / 6}=\sqrt{3} \\
& a^{1 / 6}=3^{1 / 2} \\
& a=\left(3^{1 / 2}\right)^{6} \\
& a=3^{3} \\
& a=27
\end{aligned}
$$

[91] $\log 9+\log 5$ is expressed as:
(a) $\log 4$
(b) $\log 9 / 5$
(c) $\log 5 / 9$
(d) $\log 45$

Answer:
(d) $\log 9+\log 5=\log (9 \times 5)$

$$
=\log 45
$$

$\because[\log m+\log n=\log (m \times n)]$
[92] if $\mathrm{a}: \mathrm{b}=9: 4$, then $\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=$?
(a) $3 / 2$
(b) $2 / 3$
(c) $6 / 13$
(d) $13 / 6$

Answer:
(d) If $\mathrm{a}: \mathrm{b}=9: 4$
let $a=9 k, b=4 k$

$$
\begin{aligned}
& \sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}=\sqrt{\frac{9 k}{4 k}}+\sqrt{\frac{4 k}{9 k}} \\
& =\frac{3}{2}+\frac{2}{3}=\frac{9+4}{6}=\frac{13}{6}
\end{aligned}
$$

[93] The ratio of number of boys and the number of girls in a school is found to be $15: 32$. How many boys and equal number of girls should be added to bring the ratio to $2 / 3$?
(a) 19
(b) 20
(c) 23
(d) 27

Answer:
(a) On calculator, we find that $2 / 3=0.67$

Let the number added to each term of the ratio $15: 32$ be x .
Now, try the options.
Option (a) $\rightarrow 19$
$\frac{15+19}{32+19}=0.67$
Therefore, option (a) is the answer.
[94] Find the value of a from the following:
$\sqrt{(9)}^{-5} \times \sqrt{(3)}^{-7}-\sqrt{(3)}-a$
(a) 11
(b) 13
(c) 15
(d) 17

Answer:
(d) $(\sqrt{9})^{-5} \times(\sqrt{3})^{-7}=(\sqrt{3})^{-2}$

$$
\begin{aligned}
& 3^{-5} \times\left(3^{\frac{1}{2}}\right)^{-7}=\left(3^{\frac{1}{2}}\right)^{-a} \\
& 3^{-5} \times 3^{-\frac{7}{2}}=3^{-\frac{a}{2}} \\
& 3^{-5-\frac{7}{2}}=3^{-\frac{a}{2}} \\
& 3^{\frac{-10-7}{2}}=3^{-\frac{a}{2}} \\
& 3^{-\frac{17}{2}}=3^{-\frac{a}{2}} \\
& -\frac{17}{2}=-\frac{a}{2} \\
& a=17
\end{aligned}
$$

2021 - JANUARY
[95] Find the value of $\frac{3 t^{-1}}{t^{-1 / 3}}$
(a) $\frac{3}{t^{2 / 3}}$
(b) $\frac{3}{t^{3 / 2}}$
(c) $\frac{3}{t^{1 / 3}}$
(d) $\frac{3}{t^{2}}$
(1 mark)

Answer:

(a) $\frac{3 t^{-1}}{t^{-1 / 3}}=\frac{3}{t^{1-\frac{1}{3}}}=\frac{3}{t^{\frac{2}{3}}}$
[96] If $\log _{a}(a b)=x$, then $\log _{b}(a b)$ is (a) $1 / x$
(b) $\frac{x}{1+x}$
(c) $\frac{x}{x-1}$
(d) None of these

Answer:

(c) $\log _{\mathrm{a}}(\mathrm{ab})=\mathrm{x}$
$\log _{a} a+\log _{a} b=x[A s \log m+\log n=\log m n]$
$1+\log _{a} b=x$
$\log _{a} b=x-1$... Eq. (1)
We know that $\log _{a} b \times \log _{b} a=1$
Putting the value of $\log _{a} b$ from eq. (1), we get:
$(x-1) \times \log _{b} a=1$
$\log _{b} a=\frac{1}{x-1}$
$\log _{a}(a b)=\frac{\log _{b}(a b)}{\log _{b} a}$ [As per Base Change Formula]
$\log _{\mathrm{b}}(\mathrm{ab})=\log _{\mathrm{a}}(\mathrm{ab}) \times \log _{\mathrm{b}} \mathrm{a}$
$\log _{\mathrm{b}}(\mathrm{ab})=x \times\left(\frac{1}{\mathrm{x}-1}\right)\left[\right.$ As $\left.^{\mathrm{l}} \mathrm{og}_{\mathrm{b}}(\mathrm{ab})=\mathrm{xand} \log _{\mathrm{b}} \mathrm{a}=\frac{1}{\mathrm{x}-1}\right]$
$\log _{a}(a b)=\frac{x}{x-1}$
[97] In a certain business A and B received profit in a certain ratio B and C received profits in the same ratio. If A gets ₹ 1600 and C gets ₹ 2500 then how much does B get?
(a) ₹ 2,000
(b) ₹ 2,500
(c) ₹ 1,000
(d) ₹ 1,500

Answer:

(a) $\frac{A}{B}=\frac{B}{C}$
$B^{2}=A \times C$
$B=\sqrt{A \times C}=\sqrt{1,600 \times 2,500}=2,000$
[98] The ratio of two quantities is $15: 17$. If the consequent of its inverse ratio is 15 , then the antecedent is;
(a) 15
(b) $\sqrt{15}$
(c) 17
(d) 14

Answer:
(c) Inverse Ratio $=\frac{17}{15}$

Therefore, antecedent $=17$
[99] The salaries of A, B and C are in the ratio $2: 3: 5$. If increments of $15 \%, 10 \%$ and 20% are allowed respectively to their salary, then what will be the new ratio of their salaries?
(a) $3: 3: 10$
(b) $10: 11: 20$
(c) $23: 33: 60$
(d) Cannot be determined

Answer:
(c) Since the ratio of the salaries of A, B and C is $2: 3: 5$, let the salaries be 200, 300, and 500 respectively.
A's new salary $=200+(15 \%$ of 200$)=230$
B's new salary $=300+(10 \%$ of 300$)=330$
C's new salary $=500+(20 \%$ of 500$)=600$
Therefore, clearly, the new ratio is $23: 33: 60$.

2021 - JULY

[100] The salaries of A, B, and C are in the ratio $2: 3: 5$. If increments of $15 \%, 10 \%$ and 20% are allowed respectively to their salary, then what will be the new ratio of their salaries?
(a) $23: 33: 60$
(b) $33: 23: 60$
(c) $23: 60: 33$
(d) $33: 60: 23$

Answer:
(a) Since the ratio of the salaries of A, B and C is $2: 3: 5$, let the salaries be 200, 300, and 500 respectively.
A's new salary $=200+(15 \%$ of 200$)=230$
B's new salary $=300+(10 \%$ of 300$)=330$
C's new salary $=500+(20 \%$ of 500$)=600$
Therefore, clearly, the new ratio is $23: 33: 60$.
[101] If $A: B=5: 3, B: C=6: 7$ and $C: D=14: 9$ then the value of A :
$B: C: D$ is:
(a) $20: 14: 12: 9$
(b) $20: 9: 12: 14$
(c) $20: 9: 14: 12$
(d) $20: 12: 14: 9$

Answer:

(d) We have $\frac{A}{B}=\frac{5}{3}$ and $\frac{B}{C}=\frac{6}{7}$.

To make the Bs same, let's multiply $\frac{A}{B}=\frac{5}{3}$ with $\frac{2}{2}$
Now, $\frac{A}{B}=\frac{5}{3} \times \frac{2}{2}=\frac{10}{6}$ and $\frac{B}{C}=\frac{6}{7}$.
Also, we have $\frac{C}{D}=\frac{14}{9}$.
To make the Cs same, let's multiply $\frac{B}{C}=\frac{6}{7}$ with $\frac{2}{2}$.

Therefore, $\frac{\mathrm{B}}{\mathrm{C}}=\frac{6}{7} \times \frac{2}{2}=\frac{12}{14}$.
Now, we have $\frac{A}{B}=\frac{10}{6} ; \frac{B}{C}=\frac{12}{14} ; \frac{C}{D}=\frac{14}{9}$.
Again, to make the Bs same, let's multiply $\frac{A}{B}=\frac{10}{6}$ with $\frac{2}{2}$.
Therefore, $\frac{A}{B}=\frac{10}{6} \times \frac{2}{2}=\frac{20}{12}$.
So, now we have $\frac{A}{B}=\frac{20}{12} ; \frac{B}{C}=\frac{12}{14} ; \frac{C}{D}=\frac{14}{9}$.
Therefore, $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}=20: 12: 14: 9$
[102] A vessel contained a solution of acid and water in which water was 64%. Four litres of the solution were taken out of the vessel and the same quantity of water was added. If the resulting solution contains 30% acid, the quantity (in litres) of the solution, in the beginning in the vessel, was
(a) 12
(b) 36
(c) 24
(d) 2

Answer:

(c) Let the initial total volume be V .

Water $=0.64 \mathrm{~V}$; Acid $=0.36 \mathrm{~V}$
Now, 4 litres were taken out.
Remaining Water $=0.64 \mathrm{~V}-(0.64 \times 4)=0.64 \mathrm{~V}-2.56$
Remaining Acid $=0.36 \mathrm{~V}-(0.36 \times 4)=0.36 \mathrm{~V}-1.44$
To the above, 4 litres of water was added. Therefore, the total volume of the vessel would be $\mathrm{V}-4$ litres +4 litres $=\mathrm{V}$.
Now, it is given that this resulting solution contains 30% of acid.
Therefore, $\frac{0.36 \mathrm{~V}-1.44}{\mathrm{~V}}=0.30$
$\Rightarrow \quad 0.36 \mathrm{~V}-1.44=0.30 \mathrm{~V}$
$\Rightarrow \quad 0.36 \mathrm{~V}-0.30 \mathrm{~V}=1.44$
$\Rightarrow \quad 0.06 \mathrm{~V}=1.44$
[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
\Rightarrow \quad V=\frac{1.44}{0.06}=24
$$

[103] If $x y+y z+z x=-1$ then the value of $\left(\frac{x+y}{1+x y}+\frac{z+y}{1+z y}+\frac{x+z}{1+z x}\right)$ is:
(a) $x y z$
(b) $\frac{-1}{y z}$
(c) $\frac{1}{x y z}$
(d) $\frac{1}{x+y+z}$

Answer:

(c) Given $x y+y z+z x=-1$

This means $1+x y=-y z-z x$... Eq. (1)
$1+y z=-x y-z x \ldots$ Eq. (2)
$1+z x=-x y-y z \ldots$ Eq. (3)
$\frac{x+y}{1+x y}+\frac{z+y}{1+z y}+\frac{x+z}{1+z x}$
Substituting the values of $1+x y, 1+z y$, and $1+z x$ above from Eqs. (1), (2), and (3), we get:

$$
\begin{aligned}
& \frac{x+y}{-y z-z x}+\frac{z+y}{-x y-z x}+\frac{x+z}{-x y-y z} \\
& \Rightarrow \frac{x+y}{-z(y+x)}+\frac{z+y}{-x(y+z)}+\frac{x+z}{-y(x+z)} \\
& \Rightarrow \frac{-1}{z}+\frac{-1}{x}+\frac{-1}{y} \\
& \Rightarrow-\left(\frac{1}{z}+\frac{1}{x}+\frac{1}{y}\right) \\
& \Rightarrow-\left(\frac{x y+y z+z x}{x y z}\right) \\
& \Rightarrow-\left(\frac{-1}{x y z}\right)
\end{aligned}
$$

$$
\Rightarrow \frac{1}{x y z}
$$

[104] If $\log _{4} x+\log _{16} x+\log _{64} x+\log _{256} x=\frac{25}{6}$ then the value of x is
(a) 64
(b) 4
(c) 16
(d) 2
(1 mark)
Answer:
(c) $\log _{4} x+\log _{16} x+\log _{64} x+\log _{256} x=\frac{25}{6}$
$\Rightarrow \quad \log _{2^{2}} x+\log _{2^{4}} x+\log _{2^{6}} x+\log _{2^{8}} x=\frac{25}{6}$
$\Rightarrow \quad \frac{1}{2} \log _{2} x+\frac{1}{4} \log _{2} x+\frac{1}{6} \log _{2} x+\frac{1}{8} \log _{2} x=\frac{25}{6}$
$\Rightarrow \quad \log _{2} x\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\right)=\frac{25}{6}$
$\Rightarrow \quad \log _{2} x\left(\frac{12+6+4+3}{24}\right)=\frac{25}{6}$
$\Rightarrow \quad \log _{2} x\left(\frac{25}{24}\right)=\frac{25}{6}$
$\Rightarrow \quad \log _{2} x=\frac{25}{6} \times \frac{24}{25}$
$\Rightarrow \quad \log _{2} x=4$
$\Rightarrow \quad x=2^{4}=16$
[105] Let $a=(\sqrt{5}+\sqrt{3}) /(\sqrt{5}-\sqrt{3})$ and $b=(\sqrt{5}-\sqrt{3}) /\left(\sqrt{5}+(\sqrt{3})\right.$. What is the value of a^{2} $+b^{2}$?
(a) 64
(b) 62
(c) 60
(d) 254

Answer:

(b) $\mathrm{a}=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=\frac{3.9681}{0.5040}=7.8732$
$b=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{0.5040}{3.9681}=0.1270$
$a^{2}+b^{2}=(7.8732)^{2}+(0.1270)^{2}=62$
[106] Incomes of R and S are in the ratio 7:9 and their expenditures are in the ratio $4: 5$. Their total expenditure is equal to income of R. What is the ratio of their savings?
(a) $23: 36$
(b) $28: 41$
(c) $31: 43$
(d) $35: 46$

Answer:

(d) Let the incomes of R and S be in $7 x$ and $9 x$ respectively, and their expenditures be $4 y$ and $5 y$ respectively.
Savings of $R=7 x-4 y$
Savings of $S=9 x-5 y$
Also, it is given that their total expenditures is equal to the income of R.
Therefore, $4 y+5 y=7 x$
$\Rightarrow 9 y=7 x$
$\Rightarrow x=\frac{9 y}{7} \ldots$.

Ratio of their expenditures $=\frac{7 x-4 y}{9 x-5 y}$
Putting the value of $x=\frac{9 y}{7}$ from Eq. (1)
above:

$$
\begin{aligned}
& \frac{7\left(\frac{9 y}{7}\right)-4 y}{9\left(\frac{9 y}{7}\right)-5 y} \\
& =\frac{5 y}{\frac{81 y}{7}-5 y} \\
& =\frac{5 y}{\frac{81 y-35 y}{7}} \\
& =\frac{7 \times 5 y}{46 y} \\
& =\frac{35}{46}
\end{aligned}
$$

[107] A bag contains 105 coins containing some 50 paise, and 25 paise coins. The ratio of the number of these coins is $4: 3$. The total value (in ₹) in the bag is
(a) 43.25
(b) 41.25
(c) 39.25
(d) 35.25

Answer:

(b) No. of 50 paise coins $=\frac{4}{7} \times 105=60$

No. of 25 paise coins $=\frac{3}{7} \times 105=45$
Value of 150 -paisa coin $=₹ 0.50$
Therefore, value of 6050 -paisa coins $=60 \times ₹ 0.50=₹ 30$
Value of 125 -paisa coin $=₹ 0.25$
[Chapter - 1] Ratio and Proportion, Indices, Logarithms
Therefore, value of 45 25-paisa coins $=45 \times ₹ 0.25=₹ 11.25$
Therefore, total value $=₹ 30+₹ 11.25=₹ 41.25$
[108] If $\log _{10} 3=x$ and $\log _{10} 4=y$, then the value of $\log _{10} 120$ can be expressed as
(a) $x-y+1$
(b) $x+y+1$
(c) $x+y-1$
(d) $2 x+y-1$
(1 mark)

Answer:

(b) $\log _{10} 120=\log _{10}(3 \times 4 \times 10)$

$$
=\log _{10} 3+\log _{10} 4+\log _{10} 10
$$

$$
=x+y+1
$$

[109] Find the value of $\log \left(x^{6}\right)$, if $\log (x)+2 \log \left(x^{2}\right)+3 \log \left(x^{3}\right)=14$.
(a) 3
(b) 4
(c) 5
(d) 6

Answer:
(d) $\log (x)+2 \log \left(x^{2}\right)+3 \log \left(x^{3}\right)=14$
$\Rightarrow \log x+(2 \times 2) \log x+(3 \times 3) \log x=14$
$\Rightarrow \log x+4 \log x+9 \log x=14$
$\Rightarrow 14 \log x=14$
$\Rightarrow \log x=\frac{14}{14}=1$
$\log \left(x^{6}\right)=6 \log x=6 \times 1=6$
[110] The value of $\frac{6^{n+4}+3^{n+3} \times 2^{n+3}}{5 \times 6^{n}+6^{n}}$ is:
(a) 232
(b) 242
(c) 252
(d) 262

Answer:

(c) We can see that none of the options are in terms of n. This means that n is ultimately going to get cancelled out. Therefore, we can take any value and put it in place of n, and we'll get the same answer. For the sake of simplicity, let $n=1$.
Now,

$$
\begin{aligned}
& \frac{6^{n+4}+3^{n+3} \times 2^{n+3}}{5 \times 6^{n}+6^{n}} \\
& =\frac{6^{1+4}+3^{1+3} \times 2^{1+3}}{5 \times 6^{1}+6^{1}} \\
& =\frac{6^{5}+3^{4} \times 2^{4}}{5 \times 6+6} \\
& =\frac{7,776+81 \times 16}{30+6} \\
& =\frac{7,776+1,296}{36} \\
& =\frac{9,072}{36} \\
& =252
\end{aligned}
$$

[111] In a department, the number of males and females are in the ratio $3: 2$. If 2 males and 5 females join the department, then the ratio becomes 1:1. Initially, the number of females in the department is
(a) 9
(b) 6
(c) 3
(d) 8

Answer:
(b) Let the initial number of males and females be $3 x$ and $2 x$ respectively.
As per the question, $\frac{3 x+2}{2 x+5}=\frac{1}{1}$
$\Rightarrow 3 \mathrm{x}+2=2 \mathrm{x}+5$
$\Rightarrow 3 x-2 x=5-2$
$\Rightarrow x=3$
[Chapter - 1] Ratio and Proportion, Indices, Logarithms
Therefore, initial number of females $=2 \times 3=6$
[112] If, $\left(\frac{3 a}{2 b}\right)^{2 x-4}=\left(\frac{2 b}{3 a}\right)^{2 x-4}$, for some a and b, then the value of x is
(a) 8
(b) 6
(c) 4
(d) 2

Answer:
(d) Looking at the options, you'll find that if x is 2 , then the power of the LHS as well as RHS will become 0 . Therefore, LHS and RHS both will be 1, and hence, be equal.
[113] The value of $\left(1-\sqrt[3]{0.027}\left(\frac{5}{6}\right)\left(\frac{1}{2}\right)^{2}\right)$ is:
(a) $11 / 16$
(b) $13 / 16$
(c) $15 / 16$
(d) 1
(1 mark)

Answer:

(c) $\left(1-\sqrt[3]{0.027}\left(\frac{5}{6}\right)\left(\frac{1}{2}\right)^{2}\right)$
$=\left(1-\sqrt[3]{\frac{27}{1000}}\left(\frac{5}{6}\right)\left(\frac{1}{4}\right)\right)$
$=\left(1-\sqrt[3]{\frac{27}{1000}}\left(\frac{5}{24}\right)\right)$
$=\left(1-\left(\frac{3}{10}\right)\left(\frac{5}{24}\right)\right)$
$=\left(1-\left(\frac{1}{2} \times \frac{1}{8}\right)\right)$
$=1-\frac{1}{16}$
$=\frac{16-1}{16}=\frac{15}{16}$

Alternatively,
On calculator, calculate $\sqrt[3]{0.027}$, or $(0.027)^{\frac{1}{3}}$. Follow the following steps.
First, enter 0.027 on the calculator, then press the square root button 12 times. You'll get 0.99911857266 .
Then, from this, subtract 1, i.e., press - 1.
You'll get - 0.00088142734 .
Then, multiply this number with the power, i.e., $1 / 3$. Press $\times 1 \div$ $3=$. You'll get -0.00029380911 .
Then add 1 to it, i.e., press +1 . You'll get 0.99970619089 .
Then press the buttons $(x=) 12$ times. You'll get 0.30010617315 .

This is $(0.027)^{\frac{1}{3}}$.
Now, multiply this number with $\left\{\frac{5}{6}\left(\frac{1}{2}\right)^{2}\right\}$.
You'll get 0.0625221194 . Then press $\mathrm{M}+$.
This will save this number in the memory of your calculator.
Then press $1-\mathrm{MRC}=$. You'll get 0.9374778806 .
This is your final answer.
Now, try the options.
Option (a) \rightarrow 11/16
$11 \div 16=0.6875 \neq 0.9375$
Option (b) \rightarrow 13/16
$13 \div 16=0.8125 \neq 0.9375$
Option (c) \rightarrow 15/16
$15 \div 16=0.9375$
Therefore, option (c) is the answer.

[Chapter - 1] Ratio and Proportion, Indices, Logarithms
[114] $\log \left(\frac{p^{2}}{q r}\right)+\log \left(\frac{q^{2}}{p r}\right)+\log \left(\frac{r^{2}}{p q}\right)$ is:
(a) pqr
(b) 0
(c) 1
(d) None

Answer:
(b) $\log \left(\frac{p^{2}}{q r}\right)+\log \left(\frac{q^{2}}{p r}\right)+\log \left(\frac{r^{2}}{p q}\right)$

$$
\begin{aligned}
& =\log \left(\frac{p^{2}}{q r} \times \frac{q^{2}}{p r} \times \frac{r^{2}}{p q}\right) \\
& =\log \left(\frac{p^{2} q^{2} r^{2}}{p^{2} q^{2} r^{2}}\right) \\
& =\log 1 \\
& =0
\end{aligned}
$$

[115 If $\log _{\sqrt{3}} a=6$, then ' a ' will be:
(a) 27
(b) 36
(c) 15
(d) 1
(1 mark)
Answer:
(a) Given $\log _{\sqrt{3}} a=6$
$\Rightarrow(\sqrt{3})^{6}=\mathrm{a}$
$\Rightarrow \mathrm{a}=(\sqrt{3})^{6}$
$\Rightarrow \mathrm{a}=\left[(3)^{\frac{1}{2}}\right]^{6}$
$\Rightarrow a=3^{\frac{1}{2 \times 6}}$
$\Rightarrow \mathrm{a}=3^{3}$
$\Rightarrow \mathrm{a}=27$
[116] A box contains 25 paise coins and 10 paise coins and 5 paise coins in ratios $3: 2: 1$ and total money is $₹ 40$. How many 5 paise coins are there?
(a) 65
(b) 55
(c) 40
(d) 50

Answer:

(c) Let the number of 25 paise coins be $3 x$, the number of 10 paise coins be $2 x$ and the number of 5 paise coins be x.
Value of 25 paise coins (in ₹) $=₹ 0.25 \times 3 x=₹ 0.75 x$
Value of 10 paise coins (in ₹) $=₹ 0.10 \times 2 x=₹ 0.2 x$
Value of 5 paise coins (in ₹) $=₹ 0.05 \times x=₹ 0.05 x$
Total value $=₹ 0.75 x+₹ 0.2 x+₹ 0.05 x=₹ 40$
Therefor, $x=40$
Therefore, number of 5 paise coins $=40$.
[117] If $x: y=4: 6$ and $z: x=4: 16$ find Y ?
(a) 4
(b) 6
(c) 16
(d) 1

Answer:
(b) If $x: y=4: 6$ and $z: x=4: 16$ find y
$\Rightarrow z: x=1: 4$
so, $y: x=6: 4$ and $x: z=4: 1$
$y: x: z=6: 4: 1$
so, $y=6$
[118] If $(\sqrt{3})^{18}=(\sqrt{9})^{x}$, find x ?
(a) 18
(b) 9
(c) 8
(d) 19
(1 mark)

Answer:

(b) If $(\sqrt{3})^{18}=(\sqrt{9})^{x}$

$$
\begin{array}{ll}
\left(3^{\frac{1}{2}}\right)^{18} & =(3)^{x} \\
3^{9} & =3^{x}
\end{array}
$$

On comparing

$$
9=x
$$

[119] $\log _{\sqrt{2}} 64$ is equal to:
(a) 12
(b) 6
(c) 1
(d) 8
[Chapter - 1] Ratio and Proportion, Indices, Logarithms
Answer:
(a) $\log _{\sqrt{2}} 64=\frac{\log 64}{\log \sqrt{2}}=\frac{\log 2^{6}}{\log (2)^{\frac{1}{2}}}=\frac{6 \log 2}{\frac{1}{2} \log 2}=6 \times 2=12$

2022 - December

[120] If $\log _{10} 2=y$ and $\log _{10} 3=x$, then the value of $\log _{10} 15$ is:
(a) $x-y+1$
(b) $x+y+1$
(c) $\mathrm{x}-\mathrm{y}-1$
(d) $y-x+1$

Answer:

(a) Here, $\log _{10} 2=y$ and $\log _{10} 3=x$

$$
\text { then } \log _{10} 15=\log _{10}(3 \times 5)
$$

$$
=\log _{10} 3+\log _{10} 5
$$

$$
=\log _{10} 3+\log _{10}(10 / 2)
$$

$$
=\log _{10} 3+\log _{10} 10-\log _{10} 2
$$

$$
=x+1-y
$$

$$
=x-y+1
$$

[121] $\log _{3}{ }^{4} \cdot \log _{4}{ }^{5} \cdot \log _{5}{ }^{6} \cdot \log _{6}{ }^{7} \cdot \log _{7}{ }^{8} \cdot \log _{8}{ }^{9}$ equal to:
(a) 3
(b) 2
(c) 1
(d) 0

Answer:

(b) Here, $\log _{3}{ }^{4} \cdot \log _{4}{ }^{5} \cdot \log _{5}{ }^{6} \cdot \log _{6}{ }^{7} \cdot \log _{7}{ }^{8} \cdot \log _{8}{ }^{9}$

$$
\begin{aligned}
& =\frac{\log 4}{\log 3} \times \frac{\log 5}{\log 4} \times \frac{\log 6}{\log 5} \times \frac{\log 7}{\log 6} \times \frac{\log 8}{\log 7} \times \frac{\log 9}{\log 8} \\
& =\frac{\log 9}{\log 3}=\frac{\log 3^{2}}{\log 3}=\frac{2 \log 3}{\log 3}=2
\end{aligned}
$$

[122] A sum of money is to be distributed among A, B, C, D in the proportion of $5: 2: 4: 3$. If C gets ₹ 1,000 more than D, what is B 's share?
(a) ₹ 2,000
(b) ₹ 1,500
(c) ₹ 2,500
(d) ₹ 1,000

Answer:
(a) Given, $\mathrm{A}: \mathrm{B}: \mathrm{C}: \mathrm{D}=5: 2: 4: 3$

```
Let, \(\quad A=5 x, \quad C=4 x\)
    \(B=2 x, \quad D=3 x\)
\(\because\) C gets ₹ 1,000 more than D
\(\therefore C=D+1,000\)
\(4 x=3 x+1,000\)
\(4 x-3 x=1,000\)
\(x=1,000\)
Share's of B = \(2 x\)
\(=2 \times 1,000\)
= ₹ 2,000
```

[123] By simplifying $\left(2 a^{3} b^{4}\right)^{6} /\left(4 a^{3} b\right)^{2} \times\left(a^{2} b^{2}\right)$, the answer will be:
(a) $4 a^{2} b^{3}$
(b) $4 a^{6} b^{4}$
(c) $4 a^{10} b^{10}$
(d) $4 a^{10} b^{20}$

Answer:

(d) Here, $\frac{\left(2 a^{3} b^{4}\right)^{6}}{\left(4 a^{3} b\right)^{2} \times\left(a^{2} b^{2}\right)}=\frac{2^{6} a^{18} b^{24}}{\left(4^{2} a^{6} b^{2} \times a^{2} b^{2}\right)}$

$$
\begin{aligned}
& =\frac{64 a^{18} b^{24}}{16 a^{8} b^{4}} \\
& =4 a^{10} \cdot b^{20}
\end{aligned}
$$

[124] A group of 400 soldiers posted at border area had a provision for 31 days. After 28 days 280 soldiers from this group were called back. Find the number of days for which the remaining ration will be sufficient?
(a) 3
(b) 6
(c) 8
(d) 10
(1 mark)
Answer:
(d) Here, Total men $=400$, No. of days $=31$

Total No. of unit of food for 400 men in 31 days
$=400 \times 31=12400$ unit
Total No. of unit of food for 400 men in 28 days
$=400 \times 28=11200$ unit
Rest food $=12400-11200=1200$ unit
Remain men after 28 days $=400-280=120$
No. of days for which the remaining food will be sufficient
[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
\begin{aligned}
& =\frac{\text { Total Rest food }}{\text { No. of Remaining men }} \\
& =\frac{1200}{120} \\
& =10 \text { days }
\end{aligned}
$$

2023 - June

[125] If $\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0$ then the value of $\left(\frac{a+b+c}{3}\right)^{3}$ is equal to:
(a) abc
(b) $9 a b c$
(c) $1 / a b c$
(d) $1 / 9 a b c$
(1 mark)

Answer:

(a) If $\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0$

$$
\begin{aligned}
& \quad(a)^{1 / 3}+(b)^{1 / 3}+(c)^{1 / 3}=0 \\
& \text { let } a^{1 / 3}=x, b^{1 / 3}=y, c^{1 / 3}=z \\
& \text { then } x+y+z=0 \\
& \text { and } a=x^{3}, b=y^{3}, c=z^{3}
\end{aligned}
$$

Now if $x+y+z=0$ then $x^{3}+y^{3}+z^{3}=3 x y z$
Now $\left(\frac{a+b+c}{3}\right)^{3}=\left(\frac{x^{3}+y^{3}+z^{3}}{3}\right)^{3}=\left(\frac{3 x y z}{3}\right)^{3}$

$$
\begin{aligned}
& =\left(a^{1 / 3} \cdot b^{1 / 3} \cdot c^{1 / 3}\right)^{3} \\
& =(a b c)^{1 / 3 \times 3}=a b c
\end{aligned}
$$

[126] Given that $\log _{10} x=m+n-1$ and $\log _{10} y=m-n$, the value of $\log _{10}$ $\left(\frac{100 x}{y^{2}}\right)$ expressed in terms of m and n is:
(a) $1-m+3 n$
(b) $m-1+3 n$
(c) $m+3 n+1$
(d) $m^{2}-n^{2}$
(1 mark)

Answer:

(a) Given $\log _{10} x=m+n-1$ and $\log _{10} y=m-n$

$$
\text { then } \begin{aligned}
\log _{10}\left(\frac{100 x}{y^{2}}\right) & =\log _{10} 100 x-\log _{10} y^{2} \\
& =\log _{10} 100+\log _{10} x-2 \log _{10} y \\
& =2+\log _{10} x-2 \log _{10} y \\
& =2+m+n-1-2(m-n) \\
& =2+m+n-1-2 m+2 n \\
& =1-m+3 n
\end{aligned}
$$

[127] The Value of $\left\{\log _{6}\left\{3 \log _{10} 100\right\}\right\}$
(a) 1
(b) 2
(c) 10
(d) 100

Answer:
(a) $\left[\log _{6}\left\{3 \log _{10} 100\right\}\right]=\log _{6}\left\{3 \log _{10} 10^{2}\right\}$
$=\log _{6}\left\{3 \times 2 \log _{10} 10\right\}$
$=\log _{6}\{6 \times 1\}$
$=\log _{6} 6$
= 1
[128] If $x=y^{a}, y=z^{b}, z=x^{c}$ then the value of $a b c$ is
(a) 1
(b) 2
(c) 3
(d) 4

Answer:

(a) $x=y^{a}, y=z^{b}, z=x^{c}$ find $a b c$
$x=y^{a}, y=z^{b}, z=x^{c}$
$\log x=\log y^{a}, \log y=\log z^{b}, \log z=\log x^{c}$
$\log x=a \log y, \log y=b \log z \log z=c \log x$
$\mathrm{a}=\frac{\log \mathrm{x}}{\log y}, \mathrm{~b}=\frac{\log y}{\log z}, \mathrm{c}=\frac{\log z}{\log x}$
[Chapter - 1] Ratio and Proportion, Indices, Logarithms

$$
a b c=\frac{\log x}{\log y} \times \frac{\log y}{\log z} \times \frac{\log z}{\log y x}=1
$$

